Tailor Made Thin Film Composite Membranes: Potentiality Towards Removal of Hydroquinone from Water

Abstract

The study investigated the use of thin film composite membrane (TFC) as a potential candidate for hydroquinone removal from water. Thin film composite membranes were prepared by polyamide coating on Polysulfone asymmetric membrane. FTIR study was performed to verify the Polysulfone as well as polyamide functionality. TFC membrane was characterized by contact angle, zeta potential, scanning electron microscopy studies. The salt rejection trend was seen from 500 to 1000 mg/L. The membrane is marked by permeability co-efficient B based on solution diffusion studies. The value is 0.98 × 10−6 m/s for NaCl solution at 1.4 MPa. The separation performance was 88.87% for 5 mg/L hydroquinone at 1.4 MPa. The separation was little bit lowered in acid medium because of the nature of the membrane and feed solute chemistry. The ‘pore swelling’ and ‘salting out’ influenced hydroquinone separation in the presence of NaCl. The hydroquinone separation was 80.63% in 1000 mg/L NaCl solution. In acidic pH, NaCl separation was influenced much more compared to hydroquinone. The separation is influenced by field water matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bhattacharya A, Misra B (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29(8):767–814

    CAS  Article  Google Scholar 

  2. 2.

    Belhateche DH (1995) Choose appropriate wastewater treatment technologies. Chem Eng Prog 91(8):32–51

    CAS  Google Scholar 

  3. 3.

    Cadotte JE, Petersen RJ (1981) Thin-film composite reverse-osmosis membranes, origin, development, and recent advances [Water purification]. In: ACS symposium series (USA), J Am Chem Soc

  4. 4.

    Mulder M (2003) Basic principles of membrane technology. Kluwer, Dordrecht

    Google Scholar 

  5. 5.

    Tarboush BJA, Rana D, Matsuura T, Arafat H, Narbaitz R (2008) Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J Membr Sci 325(1):166–175

    CAS  Article  Google Scholar 

  6. 6.

    Bhattacharya A (2006) Remediation of pesticide-polluted waters through membranes. Sep Purif Rev 35(1):1–38

    CAS  Article  Google Scholar 

  7. 7.

    Suresh S, Srivastava VC, Mishra IM (2012) Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review. Int J Energy Environ Eng 3:1–19

    Article  Google Scholar 

  8. 8.

    Hudnall PM (2000) Hydroquinone. In: Elvers B (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Tennessee Eastman Company, Kinsport, TN

    Google Scholar 

  9. 9.

    Suresh S, Srivastava VC, Mishra IM (2011) Study of catechol and resorcinol adsorption mechanism through granular activated carbon characterization, pH and kinetic study. Sep Sci Technol 46(11):1750–1766

    CAS  Article  Google Scholar 

  10. 10.

    Ayranci E, Duman O (2005) Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth. J Hazard Mater 124(1):125–132

    CAS  Article  Google Scholar 

  11. 11.

    Yıldız N, Gönülşen R, Koyuncu H, Çalımlı A (2005) Adsorption of benzoic acid and hydroquinone by organically modified bentonites. Colloids Surf A Physicochem Eng Asp 260(1):87–94

    Google Scholar 

  12. 12.

    Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C (2013) Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Int J Biol Macromol 58:169–175

    CAS  Article  Google Scholar 

  13. 13.

    Ouachtak H, Akbour RA, Douch J, Jada A, Hamdani M (2015) Removal from water and adsorption onto natural quartz sand of hydroquinone. J Encapsul Adsorpt Sci 5(03):131

    Article  Google Scholar 

  14. 14.

    Latkar M, Swaminathan K, Chakrabarti T (2003) Kinetics of anaerobic biodegradation of resorcinol catechol and hydroquinone in upflow fixed film–fixed bed reactors. Bioresour Technol 88(1):69–74

    CAS  Article  Google Scholar 

  15. 15.

    Nasr B, Abdellatif G, Canizares P, Sáez C, Lobato J, Rodrigo MA (2005) Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. Environ Sci Technol 39(18):7234–7239

    CAS  Article  Google Scholar 

  16. 16.

    Chien SC, Chen H, Wang M, Seshaiah K (2009) Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite. Chemosphere 74(8):1125–1133

    Article  Google Scholar 

  17. 17.

    Arana J, Rodríguez CF, Díaz OG, Melián JH, Pena JP (2005) Role of Cu in the Cu–TiO2 photocatalytic degradation of dihydroxybenzenes. Catal Today 101(3):261–266

    CAS  Article  Google Scholar 

  18. 18.

    Prabhakaran D, Basha C, Kannadasan T, Aravinthan P (2010) Removal of hydroquinone from water by electrocoagulation using flow cell and optimization by response surface methodology. J Environ Sci Health, Part A 45(4):400–412

    CAS  Article  Google Scholar 

  19. 19.

    Mehta R, Brahmbhatt H, Saha N, Bhattacharya A (2015) Removal of substituted phenyl urea pesticides by reverse osmosis membranes: laboratory scale study for field water application. Desalination 358:69–75

    CAS  Article  Google Scholar 

  20. 20.

    Asai S, Majumdar S, Gupta A, Kargupta K, Ganguly S (2009) Dynamics and pattern formation in thermally induced phase separation of polymer–solvent system. Comput Mater Sci 47(1):193–205

    CAS  Article  Google Scholar 

  21. 21.

    Zhao W, Su Y, Li C, Shi Q, Ning X, Jiang Z (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318(1):405–412

    CAS  Article  Google Scholar 

  22. 22.

    Kapantaidakis G, Koops G, Wessling M (2002) Effect of spinning conditions on the structure and the gas permeation properties of high flux polyethersulfone—polyimide blend hollow fibers. Desalination 144(1):121–125

    CAS  Article  Google Scholar 

  23. 23.

    Sharma S, Dhandhala N, Bhattacharya A (2012) Studies on the effects of salt and surfactant in wet phase separation of polysulfone. J Macromol Sci Phys Part A 49(11):918–925

    CAS  Article  Google Scholar 

  24. 24.

    Blanco J-F, Sublet J, Nguyen QT, Schaetzel P (2006) Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J Membr Sci 283(1):27–37

    CAS  Article  Google Scholar 

  25. 25.

    Azari S, Karimi M, Kish M (2010) Structural properties of the poly (acrylonitrile) membrane prepared with different cast thicknesses. Ind Eng Chem Res 49(5):2442–2448

    CAS  Article  Google Scholar 

  26. 26.

    Bhattacharya A, Ghosh P (2004) Nanofiltration and reverse osmosis membranes: theory and application in separation of electrolytes. Rev Chem Eng 20(1–2):111–173

    CAS  Google Scholar 

  27. 27.

    Wijmans J, Baker R (1995) The solution–diffusion model: a review. J Membr Sci 107:1–21

    CAS  Article  Google Scholar 

  28. 28.

    Hung L-Y, Lue SJ, You J-H (2011) Mass-transfer modeling of reverse-osmosis performance on 0.5–2% salty water. Desalination 265(1):67–73

    CAS  Article  Google Scholar 

  29. 29.

    Leberman R, Soper A (1995) Effect of high salt concentrations on water structure. Nature 378:364

    CAS  Article  Google Scholar 

  30. 30.

    Postorino P, Tromp R, Ricci M, Soper A, Neilson G (1993) The interatomic structure of water at supercritical temperatures. Nature 366:668

    CAS  Article  Google Scholar 

  31. 31.

    Willauer HD, Huddleston JG, Rogers RD (2002) Solute partitioning in aqueous biphasic systems composed of polyethylene glycol and salt: the partitioning of small neutral organic species. Ind Eng Chem Res 41(7):1892–1904

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to SERB, Department of Science and Technology, India for research funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Modi, R., Mehta, R., Brahmbhatt, H. et al. Tailor Made Thin Film Composite Membranes: Potentiality Towards Removal of Hydroquinone from Water. J Polym Environ 25, 1140–1146 (2017). https://doi.org/10.1007/s10924-016-0887-z

Download citation

Keywords

  • Thin film composite membrane
  • Permeability co-efficient
  • Hydroquinone
  • Water
  • Sodium chloride