Skip to main content
Log in

Optimization of Poly(dl-Lactic Acid) Degradation and Evaluation of Biological Re-polymerization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(dl-lactic acid) or PLA is a biodegradable polymer. It has received much attention since it plays an important role in resolving the global warming problem. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported as having PLA depolymerase potential and being applicable to PLA biodegradation, which was used in this work. Therefore, this research demonstrates the important basic knowledge on the biological degradation process by the crude PLA-degrading enzyme from strain T16-1. Its re-polymerization was evaluated. The optimization of PLA degradation by statistical methods based on central composite design was determined. Approximately 6700 mg/l PLA powder was degraded by the crude enzyme under optimized conditions: an initial enzyme activity of 200 U/ml, incubated at 60 °C for 24 h released 6843 mg/l lactic acid with 82% conversion, which was similar to the commercial enzyme proteinase K (81%). The degradable products were re-polymerized repeatedly by using commercial lipase as a catalyst under a nitrogen atmosphere for 6 h. A PLA oligomer was achieved with a molecular weight of 378 Da (n = 5). This is the first report to demonstrate the high efficiency of the enzyme to degrade 100% of PLA powder and to show the biological recycling process of PLA, which is promising for the treatment and utilization of biodegradable plastic wastes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pranamuda H, Tokiwa Y, Tanaka H (1997) Appl Environ Microbiol 63:1637–1640

    CAS  Google Scholar 

  2. Tomita K, Kuroki Y, Nakai K (1999) J Biosci Bioeng 87:752–755

    Article  CAS  Google Scholar 

  3. Tomita K, Nakajima T, Kikuchi Y, Miwa N (2004) Polym Degrad Stab 84:433–438

    Article  CAS  Google Scholar 

  4. Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Polym Degrad Stab 81:167–171

    Article  CAS  Google Scholar 

  5. Sukkhum S, Tokuyama S, Tamura T, Kitpreechavanich V (2009) J Gen Appl Microbiol 55:459–467

    Article  CAS  Google Scholar 

  6. Hanphakphoom S, Maneewong N, Sukkhum S, Tokuyama S, Kitpreechavanich V (2014) J Gen Appl Microbiol 60:13–22

    Article  CAS  Google Scholar 

  7. Sukkhum S, Tokuyama S, Kitpreechavanich V (2009) Biotechnol Bioprocess Eng 14:302–306

    Article  CAS  Google Scholar 

  8. Sukkhum S, Tokuyama S, Kitpreechavanich V (2012) J Microbiol Biotechnol 22(1):92–99

    Article  CAS  Google Scholar 

  9. Williams DF (1981) Eng Med Biol Soc 10:5–7

    Google Scholar 

  10. Pranamuda H, Tsuchii A, Tokiwa Y (2001) Macromol Biosci 1:25–29

    Article  CAS  Google Scholar 

  11. Jarerat A, Tokiwa Y, Tanaka H (2003) Biotechnol Lett 25:2035–2038

    Article  CAS  Google Scholar 

  12. Jarerat A, Tokiwa Y (2001) Macromol Biosci 1:136–140

    Article  CAS  Google Scholar 

  13. Cui Y, Li D, Gao B, Zhou Y, Chen L, Qiu B, Li Y, Duan Q, Hu N (2015) J Coord Chem 69(4):656–667

    Article  Google Scholar 

  14. Dai Z, Cui Y, Chena C, Wu J (2016) Chem Commun 52:8826–8829

    Article  CAS  Google Scholar 

  15. Chuensangjun C, Pechyen C, Chisti Y, Sirisansaneeyakul S (2012) Adv Mater Res 506:154–157

    Article  CAS  Google Scholar 

  16. Semlitsch S, Torron S, Johansson M, Martinelle M (2016) Green Chem 18(7):1923–1929

    Article  CAS  Google Scholar 

  17. Spinella S, Ganesh M, Re GL, Zhang S, Raquez JM, Dubois P, Gross RA (2015) Green Chem 17(8):4146–4150

    Article  CAS  Google Scholar 

  18. He W, Fang Z, Zhu N, Ji D, Li Z, Guo K (2015) Biocatal Biotransformation 33(3):150–155

    Article  CAS  Google Scholar 

  19. Fan Y, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Polym Degrad Stab 79:547–562

    Article  CAS  Google Scholar 

  20. Tsuji H, Nakahara K (2002) J Appl Polym Sci 86:186–194

    Article  CAS  Google Scholar 

  21. Takahashi Y, Okajima S, Toshima K, Matsumura S (2004) Macromol Biosci 4:346–353

    Article  CAS  Google Scholar 

  22. Jarerat A, Tokiwa Y, Tanaka H (2006) Appl Microbiol Biotechnol 72:726–731

    Article  CAS  Google Scholar 

  23. Lassalle VL, Ferreira ML (2008) J Chem Technol Biotechnol 83(11):1493–1502

    Article  CAS  Google Scholar 

  24. Lomthong T, Hanphakphoom S, Yoksan R, Kitpreechavanich V (2015) Int Biodeterior Biodegrad 104:401–410

    Article  CAS  Google Scholar 

  25. Piemonte V, Gironi F (2013) J Polym Environ 21(2):313–318

    Article  CAS  Google Scholar 

  26. Kondabagil R, Kiran D (2003) Soundar. World J Microbiol Biotechnol 19:859–865

    Article  Google Scholar 

  27. Kumar S, Bhatnagar N, Ghosh AK (2016) Polym Bull 73:2087–2104

    Article  CAS  Google Scholar 

  28. Kobayashi S (2010) Proc Jpn Acad Ser 86:338–365

    Article  CAS  Google Scholar 

  29. Xiao RZX, Zhao WZ, Guang LZ, Jun JW, Fan ZL (2010) Int J Nanomed 5:1057–1065

    CAS  Google Scholar 

  30. Jamshidian M, Arab T, Imran E, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552–572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the matching fund between Thailand Research Fund through and Srinakharinwirot University (Grant No. TRG5680026) and under the Core-to-Core Program, which was financially supported by Japan Society for the Promotion of Science (JSPS), National Research Council of Thailand (NRCT), Vietnam Ministry of Science and Technology (MOST), the National University of Laos, Beuth University of Applied Sciences and Brawijaya University as well as, Thailand Toray science foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhumaporn Krajangsang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngpreda, A., Panyachanakul, T., Kitpreechavanich, V. et al. Optimization of Poly(dl-Lactic Acid) Degradation and Evaluation of Biological Re-polymerization. J Polym Environ 25, 1131–1139 (2017). https://doi.org/10.1007/s10924-016-0885-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0885-1

Keywords

Navigation