Journal of Polymers and the Environment

, Volume 25, Issue 3, pp 854–866 | Cite as

Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering

  • S. IslamEmail author
  • M. A. Rahman Bhuiyan
  • M. N. Islam
Original Paper


Chitin and its deacetylated derivative chitosan are natural polymers composed of randomly distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit). Biopolymers like chitin and chitosan exhibit diverse properties that open up a wide-ranging of applications in various sectors especially in biomedical science. The latest advances in the biomedical research are important emerging trends that hold a great promise in wound-healing management products. Chitin and chitosan are considered as useful biocompatible materials to be used in a medical device to treat, augment or replace any tissue, organ, or function of the body. A body of recent studies suggests that chitosan and its derivatives are promising candidates for supporting materials in tissue engineering applications. This review article is mainly focused on the contemporary research on chitin and chitosan towards their applications in numerous biomedical fields namely tissue engineering, artificial kidney, skin, bone, cartilage, liver, nerve, tendon, wound-healing, burn treatment and some other useful purposes.


Chitin Chitosan Tissue engineering Wound-healing Burn treatment Antimicrobial application 


  1. 1.
    Yeul VS, Rayalu SS (2013) J Polym Environ 21(2):606–614CrossRefGoogle Scholar
  2. 2.
    Bhuiyan MR, Shaid A, Bashar MM, Haque P, Hannan MA (2013) Open J Org Polym Mater 3(4):87–91CrossRefGoogle Scholar
  3. 3.
    Dutta PK, Dutta J, Tripathi VS (2004) J Sci Ind Res 63(1):20–31Google Scholar
  4. 4.
    Bashar MM, Khan MA (2013) J Polym Environ 21(1):181–190CrossRefGoogle Scholar
  5. 5.
    Chou CK, Chen SM, Li YC, Huang TC, Lee JA (2015) SpringerPlus 4(1):1–7CrossRefGoogle Scholar
  6. 6.
    Kong M, Chen XG, Xing K, Park HJ (2010) Int J Food Microbiol 144(1):51–63CrossRefGoogle Scholar
  7. 7.
    Bhuiyan MR, Shaid A, Khan MA (2014) Chem Mater Eng 2(4):96–100Google Scholar
  8. 8.
    Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Gemma G, Heras Á (2009) Curr Chem Biol 3(2):203–230Google Scholar
  9. 9.
    Kurita K (2001) Prog Polym Sci 26(9):1921–1971CrossRefGoogle Scholar
  10. 10.
    Kumar MNR (2000) React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  11. 11.
    Tan H, Chu CR, Payne KA, Marra KG (2009) Biomaterials 30(13):2499–2506CrossRefGoogle Scholar
  12. 12.
    Croisier F, Jérôme C (2013) Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  13. 13.
    Kim SK, Rajapakse N (2005) Carbohydr Polym 62(4):357–368CrossRefGoogle Scholar
  14. 14.
    Roberts GAF (1992) Chitin chemistry. Macmillan Press Ltd., LondonCrossRefGoogle Scholar
  15. 15.
    Mima S, Miya SM, Iwamoto R, Yoshikawa S (1983) J Appl Polym Sci 28:1909–1917CrossRefGoogle Scholar
  16. 16.
    Kasaai MR (2009) J Agric Food Chem 57(5):1667–1676CrossRefGoogle Scholar
  17. 17.
    No HK, Meyers SP (1995) J Aquat Food Prod Technol 4(2):27–52CrossRefGoogle Scholar
  18. 18.
    Koide SS (1998) Nutr Res 18(6):1091–1101CrossRefGoogle Scholar
  19. 19.
    Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Carbohydr Polym 80(1):197–207CrossRefGoogle Scholar
  20. 20.
    Tomihata K, Ikada Y (1997) Biomaterials 18:567–575CrossRefGoogle Scholar
  21. 21.
    Zhang H, Neau SH (2001) Biomaterials 22(12):1653–1658CrossRefGoogle Scholar
  22. 22.
    Lim SH, Hudson SM (2004) Carbohydr Res 339(2):313–319CrossRefGoogle Scholar
  23. 23.
    Zheng LY, Zhu JF (2003) Carbohydr Polym 54(4):527–530CrossRefGoogle Scholar
  24. 24.
    O’brien FJ (2011) Mater Today 14(3):88–95CrossRefGoogle Scholar
  25. 25.
    Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Macromol Biosci 12(3):286–311CrossRefGoogle Scholar
  26. 26.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Carbohydr Polym 82(2):227–232CrossRefGoogle Scholar
  27. 27.
    Chow KS, Khor E, Wan ACA (2001) J Polym Res 8(1):27–35CrossRefGoogle Scholar
  28. 28.
    Wang M, Chen LJ, Ni J, Weng J, Yue CY (2001) J Mater Sci Mater Med 12(10–12):855–860CrossRefGoogle Scholar
  29. 29.
    Ma J, Wang H, He B, Chen J (2001) Biomaterials 22(4):331–336CrossRefGoogle Scholar
  30. 30.
    Chow KS, Khor E (2000) Biomacromolecules 1(1):61–67CrossRefGoogle Scholar
  31. 31.
    Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, Cho CS (2002) Biomaterials 23(14):2827–2834CrossRefGoogle Scholar
  32. 32.
    Cai K, Yao K, Cui Y, Lin S, Yang Z, Li X, Luo J (2002) J Biomed Mater Res 60(3):398–404CrossRefGoogle Scholar
  33. 33.
    Chung TW, Lu YF, Wang SS, Lin YS, Chu SH (2002) Biomaterials 23(24):4803–4809CrossRefGoogle Scholar
  34. 34.
    Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Jayakumar R (2009) Carbohydr Polym 77(4):863–869CrossRefGoogle Scholar
  35. 35.
    Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Carbohydr Polym 79(2):284–289CrossRefGoogle Scholar
  36. 36.
    Peter M, Kumar PTS, Binulal NS, Nair SV, Tamura H, Jayakumar R (2009) Carbohydr Polym 78(4):926–931CrossRefGoogle Scholar
  37. 37.
    Sing DK, Ray AR (2000) J Macromol Sci Part C Polym Rev 40(1):69–83CrossRefGoogle Scholar
  38. 38.
    Matsuyama H, Teramoto M, Urano H (1997) J Membr Sci 126(1):151–160CrossRefGoogle Scholar
  39. 39.
    Nishioka N, Kuromatsu T, Takahashi T, Uno M, Kosai K (1986) Polym J 18(2):131–140CrossRefGoogle Scholar
  40. 40.
    Mollison AN, Graydon WF (1977) J Biomed Mater Res 11(4):563–575CrossRefGoogle Scholar
  41. 41.
    Yoon SC, Jhon MS (1982) J Appl Polym Sci 27(8):3133–3149CrossRefGoogle Scholar
  42. 42.
    Senthilkumar S, Rajesh S, Jayalakshmi A, Aishwarya G, Mohan DR (2012) J Polym Res 19(6):1–11CrossRefGoogle Scholar
  43. 43.
    Radhakumary C, Nair PD, Mathew S, Nair CP (2006) J Appl Polym Sci 101(5):2960–2966CrossRefGoogle Scholar
  44. 44.
    Blair HS, Guthrie J, Law TK, Turkington P (1987) J Appl Polym Sci 33(2):641–656CrossRefGoogle Scholar
  45. 45.
    Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2003) Carbohydr Polym 53(4):431–438CrossRefGoogle Scholar
  46. 46.
    Uragami T, Yoshida F, Sugihara M (1983) J Appl Polym Sci 28(4):1361–1370CrossRefGoogle Scholar
  47. 47.
    Reinhart CT, Peppas NA (1984) J Membr Sci 18:227–239CrossRefGoogle Scholar
  48. 48.
    Kikuchi Y, Kubota N (1987) Bull Chem Soc Jpn 60(1):375–380CrossRefGoogle Scholar
  49. 49.
    Kikuchi Y, Kubota N, Maruo K, Goto Y (1987) Die Makromol Chem 188(11):2631–2642CrossRefGoogle Scholar
  50. 50.
    Kikuchi Y, Kubota N, Mitsuishi H (1988) J Appl Polym Sci 35(1):259–271CrossRefGoogle Scholar
  51. 51.
    Kikuchi Y, Kubota N (1988) Bull Chem Soc Jpn 61(8):2943–2947CrossRefGoogle Scholar
  52. 52.
    Kubota N, Kikuchi Y, Mizuhara Y, Ishihara T, Takita Y (1993) J Appl Polym Sci 50(9):1665–1670CrossRefGoogle Scholar
  53. 53.
    Hirano S (1978) Agric Biol Chem 42(10):1939–1940Google Scholar
  54. 54.
    Hirano S, Tobetto K, Hasegawa M, Matsuda N (1980) J Biomed Mater Res 14(4):477–485CrossRefGoogle Scholar
  55. 55.
    Singh DK, Ray AR (1994) J Appl Polym Sci 53(8):1115–1121CrossRefGoogle Scholar
  56. 56.
    Singh DK, Ray AR (1997) J Appl Polym Sci 66(5):869–877CrossRefGoogle Scholar
  57. 57.
    Singh DK, Ray AR (1999) J Membr Sci 155(1):107–112CrossRefGoogle Scholar
  58. 58.
    Nishimura K, Nishimura SI, Seo H, Nishi N, Tokura S, Azuma I (1986) J Biomed Mater Res 20(9):1359–1372CrossRefGoogle Scholar
  59. 59.
    Zikakis J (ed) (2012) Chitin, chitosan, and related enzymes. Academic, New YorkGoogle Scholar
  60. 60.
    Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biomaterials 9(3):247–252CrossRefGoogle Scholar
  61. 61.
    Yang TL (2011) Int J Mol Sci 12(3):1936–1963CrossRefGoogle Scholar
  62. 62.
    Su CH, Sun CS, Juan SW, Hu CH, Ke WT, Sheu MT (1997) Biomaterials 18(17):1169–1174CrossRefGoogle Scholar
  63. 63.
    Hung WS, Fang CL, Su CH, Lai WFT, Chang YC, Tsai YH (2001) J Biomed Mater Res 56(1):93–100CrossRefGoogle Scholar
  64. 64.
    Su CH, Sun CS, Juan SW, Ho HO, Hu CH, Sheu MT (1999) Biomaterials 20(1):61–68CrossRefGoogle Scholar
  65. 65.
    Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Jayakumar R (2010) J Biomed Mater Res 21(2):807–813Google Scholar
  66. 66.
    Kumar PS, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Carbohydr Polym 80(3):761–767CrossRefGoogle Scholar
  67. 67.
    Dung PL, Pham TTD, Nguyen KT, Chu DK, Le TS, Trinh B, Nguyen TB, Bach HA, Cao VM (2001) Vinachitin, an artificial skin for wound healing. Kodansha Scientific Ltd., TokyoGoogle Scholar
  68. 68.
    Stone CA, Wright H, Devaraj VS, Clarke T, Powell R (2000) Br J Plast Surg 53(7):601–606CrossRefGoogle Scholar
  69. 69.
    Yannas IV, Burke JF (1980) J Biomed Mater Res 14(1):65–81CrossRefGoogle Scholar
  70. 70.
    Kifune K, Yamaguchi Y, Kishimoto S (1988) Trans Soc Biomater 11:216–218Google Scholar
  71. 71.
    Kim KY, Min DS (1988) Trans Soc Biomater 11:558Google Scholar
  72. 72.
    Mao J, Zhao L, Yao K, Shang Q, Yang G, Cao Y (2003) J Biomed Mater Res, Part A 64(2):301–308CrossRefGoogle Scholar
  73. 73.
    Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R (2002) Biomaterials 23(18):3871–3878CrossRefGoogle Scholar
  74. 74.
    Hench LL, Wilson J (1984) Science 226(4675):630–636CrossRefGoogle Scholar
  75. 75.
    Kim IY, Seo SJ, Moon HS, Yoo MK, ParkIY Kim BC, Cho CS (2008) Biotechnol Adv 26(1):1–21CrossRefGoogle Scholar
  76. 76.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Applications of carbon nanotubes. In: Carbon nanotubes-synthesis, structure, properties, and applications. Springer, Berlin, Heidelberg, pp 391–425Google Scholar
  77. 77.
    Samal SS, Bal S (2008) J Miner Mater Charact Eng 7(04):355Google Scholar
  78. 78.
    Wang SF, Shen L, Zhang WD, Tong YJ (2005) Biomacromolecules 6(6):3067–3072CrossRefGoogle Scholar
  79. 79.
    Gutiérrez MC, Jobbágy M, Ferrer ML, del Monte F (2007) Chem Mater 20(1):11–13CrossRefGoogle Scholar
  80. 80.
    Zhang Y, Ni M, Zhang M, Ratner B (2003) Tissue Eng 9(2):337–345CrossRefGoogle Scholar
  81. 81.
    Zhang Y, Zhang M (2002) J Biomed Mater Res 62(3):378–386CrossRefGoogle Scholar
  82. 82.
    Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Biomaterials 25(6):1049–1058CrossRefGoogle Scholar
  83. 83.
    Kawakami T, Antoh M, Hasegawa H, Yamagishi T, Ito M, Eda S (1992) Biomaterials 13(11):759–763CrossRefGoogle Scholar
  84. 84.
    Hu Q, Li B, Wang M, Shen J (2004) Biomaterials 25(5):779–785CrossRefGoogle Scholar
  85. 85.
    Suh JKF, Matthew HW (2000) Biomaterials 21(24):2589–2598CrossRefGoogle Scholar
  86. 86.
    Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) J Biomed Mater Res 34(2):211–220CrossRefGoogle Scholar
  87. 87.
    Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Matrix Biol 27(1):12–21CrossRefGoogle Scholar
  88. 88.
    Goessler UR, Hormann K, Riedel F (2004) Int J Mol Med 13:505–514Google Scholar
  89. 89.
    Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Biomaterials 20(20):1937–1944CrossRefGoogle Scholar
  90. 90.
    Mattioli-Belmonte M, Gigante A, Muzzarelli RAA, Politano R, De Benedittis A, Specchia N, Greco F (1999) Med Biol Eng Comput 37(1):130–134CrossRefGoogle Scholar
  91. 91.
    Cho CS, Kim IY, Kim YK (2006) Tissue Eng Regen Med 3(1):27–33Google Scholar
  92. 92.
    Detry O, Arkadopoulos N, Ting P, Kahaku E (1999) Am Surg 65(10):934Google Scholar
  93. 93.
    Hoekstra R, Chamuleau RA (2002) Int J Artif Organs 25(3):182–191Google Scholar
  94. 94.
    Ben-Ze’ev A, Robinson GS, Bucher NL, Farmer SR (1988) Proc Natl Acad Sci 85(7):2161–2165CrossRefGoogle Scholar
  95. 95.
    LeCluyse EL, Bullock PL, Parkinson A (1996) Adv Drug Deliv Rev 22(1):133–186CrossRefGoogle Scholar
  96. 96.
    Kang IK, Moon JS, Jeon HM, Meng W, Kim YI, Hwang YJ, Kim S (2005) J Mater Sci Mater Med 16(6):533–539CrossRefGoogle Scholar
  97. 97.
    Lindahl U, Hook M (1978) Annu Rev Biochem 47(1):385–417CrossRefGoogle Scholar
  98. 98.
    Li J, Pan J, Zhang L, Guo X, Yu Y (2003) J Biomed Mater Res, Part A 67(3):938–943CrossRefGoogle Scholar
  99. 99.
    Li J, Pan J, Zhang L, Yu Y (2003) Biomaterials 24(13):2317–2322CrossRefGoogle Scholar
  100. 100.
    Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HW (2000) Biomaterials 21(22):2315–2322CrossRefGoogle Scholar
  101. 101.
    Wang X, Yan Y, Lin F, Xiong Z, Wu R, Zhang R, Lu Q (2005) J Biomater Sci Polym Ed 16(9):1063–1080CrossRefGoogle Scholar
  102. 102.
    Heath CA, Rutkowski GE (1998) Trends Biotechnol 16(4):163–168CrossRefGoogle Scholar
  103. 103.
    Willerth SM, Sakiyama-Elbert SE (2007) Adv Drug Deliver Rev 59(4):325–338CrossRefGoogle Scholar
  104. 104.
    Nair LS, Laurencin CT (2007) Prog Polym Sci 32(8):762–798CrossRefGoogle Scholar
  105. 105.
    Haipeng G, Yinghui Z, Jianchun L, Yandao G, Nanming Z, Xiufang Z (2000) J Biomed Mater Res 52(2):285–295CrossRefGoogle Scholar
  106. 106.
    Yuan Y, Zhang P, Yang Y, Wang X, Gu X (2004) Biomaterials 25(18):4273–4278CrossRefGoogle Scholar
  107. 107.
    Bunge RP (1994) J Neurol 242(1):S19–S21CrossRefGoogle Scholar
  108. 108.
    Itoh S, Suzuki M, Yamaguchi I, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J (2003) Artif Organs 27(12):1079–1088CrossRefGoogle Scholar
  109. 109.
    Shigemasa Y, Minami S (1996) Biotechnol Genet Eng Rev 13(1):383–420CrossRefGoogle Scholar
  110. 110.
    Baldrick P (2010) Regul Toxicol Pharm 56(3):290–299CrossRefGoogle Scholar
  111. 111.
    Kumar MR (1999) Bull Mater Sci 22(5):905–915CrossRefGoogle Scholar
  112. 112.
    Dutkiewicz J, Szosland L, Kucharska M, Judkiewicz L, Ciszewski R (1990) J Bioact Compat Polym 5(3):293–304CrossRefGoogle Scholar
  113. 113.
    Sahoo D, Sahoo S, Mohanty P, Sasmal S, Nayak PL (2009) Design Monomers Polym 12(5):377–404CrossRefGoogle Scholar
  114. 114.
    Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S (2007) Carbohydr Polym 68(1):44–53CrossRefGoogle Scholar
  115. 115.
    Laurienzo P (2010) Mar Drugs 8(9):2435–2465CrossRefGoogle Scholar
  116. 116.
    Horton D, Just EK (1973) Carbohydr Res 29(1):173–179CrossRefGoogle Scholar
  117. 117.
    Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Int J Biol Macromol 40(3):175–181CrossRefGoogle Scholar
  118. 118.
    Xue L, Greisler HP (2003) J Vasc Surg 37(2):472–480CrossRefGoogle Scholar
  119. 119.
    Madihally SV, Matthew HW (1999) Biomaterials 20(12):1133–1142CrossRefGoogle Scholar
  120. 120.
    Şenel S, McClure SJ (2004) Adv Drug Deliv Rev 56(10):1467–1480CrossRefGoogle Scholar
  121. 121.
    Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Expert Rev Anticancer Ther 9(7):857–879CrossRefGoogle Scholar
  122. 122.
    Rajendran S, Anand SC (2002) Text Prog 32(4):1–42CrossRefGoogle Scholar
  123. 123.
    Nakajima M, Atsumi K, Kifune K, Miura K, Kanamaru H (1986) Jpn J Surg 16(6):418–424CrossRefGoogle Scholar
  124. 124.
    Chung YC, Wang HL, Chen YM, Li SL (2003) Bioresour Technol 88(3):179–184CrossRefGoogle Scholar
  125. 125.
    Bhuiyan MR, Hossain MA, Zakaria M, Islam MN, Uddin MZ (2016) J Polym Environ. doi: 10.1007/s10924-016-0815-2 Google Scholar
  126. 126.
    Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010) Prog Mater Sci 55(7):675–709CrossRefGoogle Scholar
  127. 127.
    Evans EE, Kent SP (1962) J Histochem Cytochem 10(1):24–28CrossRefGoogle Scholar
  128. 128.
    Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Food Chem 114(4):1173–1182CrossRefGoogle Scholar
  129. 129.
    Yalpani M, Johnson F, Robinson LE, Brine CJ, Sandford PA, Zikakis JP (1992) Advances in chitin and chitosan. Elsevier, New YorkGoogle Scholar
  130. 130.
    Ramya R, Venkatesan J, Kim SK, Sudha PN (2012) J Biomater Tissue Eng 2(2):100–111CrossRefGoogle Scholar
  131. 131.
    Kim SK (ed) (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca RatonGoogle Scholar
  132. 132.
    Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Carbohydr Polym 80(2):442–448CrossRefGoogle Scholar
  133. 133.
    Koshkina NV, Agoulnik IY, Melton SL, Densmore CL, Knight V (2003) Mol Ther 8(2):249–254CrossRefGoogle Scholar
  134. 134.
    Dass CR (2004) Biotechnol Appl Biochem 40(2):113–122CrossRefGoogle Scholar
  135. 135.
    Pillé JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Malvy C (2006) Hum Gene Ther 17(10):1019–1026CrossRefGoogle Scholar
  136. 136.
    Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Jpn J Cancer Res 92(4):459–466CrossRefGoogle Scholar
  137. 137.
    Chen WR, Adams RL, Carubelli R, Nordquist RE (1997) Cancer Lett 115(1):25–30CrossRefGoogle Scholar
  138. 138.
    Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I (1984) Immunological activity of chitin and its derivatives. Vaccine 2:93–99CrossRefGoogle Scholar
  139. 139.
    Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M (1988) Chem Pharm Bull 36(2):784–790CrossRefGoogle Scholar
  140. 140.
    Murata J, Saiki I, Nishimura SI, Nishi N, Tokura S, Azuma I (1989) Jpn J Cancer Res 80(9):866–872CrossRefGoogle Scholar
  141. 141.
    Gumińska M, Ignacak J, Wojcik E (1995) Pol J Pharmacol 48(5):495–501Google Scholar
  142. 142.
    Qi L, Xu Z, Chen M (2007) Eur J Cancer 43(1):184–193CrossRefGoogle Scholar
  143. 143.
    Lo J, Lange D, Chew BH (2014) J Antibiot 3(1):87–97CrossRefGoogle Scholar
  144. 144.
    Irvine SA, Yun X, Venkatraman S (2012) Drug Deliv and Transl Res 2(5):384–397CrossRefGoogle Scholar
  145. 145.
    Chiellini E, Giusti P (1983) Heparin-like substances and blood-compatible polymers obtained from chitin and chitosan. In: Polymers in medicine. Springer, US, pp 359–374CrossRefGoogle Scholar
  146. 146.
    Dufresne A, Thomas S, Pothan LA (2013) Chemical modification of chitosan and its biomedical application. In: Biopolymer nanocomposites-processing properties and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 33–51CrossRefGoogle Scholar
  147. 147.
    Andrades JA (2013) Naturally derived biomaterials: preparation and application. In: Regenerative medicine and tissue engineering. InTech, Janeza Trdine, Rijeka, pp 247–274CrossRefGoogle Scholar
  148. 148.
    Gupta H, Aqil M (2012) Drug Discov Today 17(9):522–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Textile EngineeringDhaka University of Engineering and Technology, DUETGazipurBangladesh
  2. 2.Department of ChemistryDhaka University of Engineering and Technology, DUETGazipurBangladesh

Personalised recommendations