Skip to main content
Log in

Films Made by Blending Poly(ε-Caprolactone) with Starch and Flour from Sagu Rhizome Grown at the Venezuelan Amazons

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Starch-based composite films have been proposed as food packaging. In this context, the study of non-conventional starch sources (sagu, Canna edulis Kerr) has worldwide special attention, because these materials can impart different properties as carbohydrate polymers. A thorough study of the matrices used (sagu starch and flour) was carried out. In the same way, thermoplastic starch (TPS)/PCL blend and thermoplastic flour (TFS)/PCL blend were obtained by melt mixing followed by compression moulding containing glycerol as plasticizer. In this study, chemical composition of the matrices and their properties were related with the properties of the developed films. Moisture content, water solubility, X-ray diffraction, thermogravimetric analysis and mechanical and microstructural properties were evaluated in the films. Taking into account the results, the sagu flour has great potential as starchy source for food packaging applications. However, concretely the flour had lower compatibility with the PCL compared to the starch/PCL blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Food Hydrocoll 45:211

    Article  Google Scholar 

  2. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Starch Stärke 67:90

    Article  Google Scholar 

  3. Santacruz S, Rivadeneira C, Castro M (2015) Food Hydrocoll 49:89

    Article  CAS  Google Scholar 

  4. Fakhouri FM, Martelli SM, Caon T, Velasco JI, Mei LHI (2015) Postharvest Biol Technol 109:57

    Article  CAS  Google Scholar 

  5. Arena U, Mastellone ML, Perugini F (2003) Int J Life Cycle Assess 8(2):92

    Article  Google Scholar 

  6. Flieger M, Kantorová M, Prell A, Rezanka T, Votruba J (2003) Folia Microbiol 48(1):27

    Article  CAS  Google Scholar 

  7. Cao X, Chang PR, Huneault MA (2008) Carbohydr Polym 71(1):119

    Article  CAS  Google Scholar 

  8. Fabra MJ, Lopez-Rubio A, Lagaron JM (2013) Food Hydrocoll 32(1):106

    Article  CAS  Google Scholar 

  9. Ortega-Toro R, Morey I, Talens P, Chiralt A (2015) Carbohydr Polym 127:282

    Article  CAS  Google Scholar 

  10. Ludueña LN, Alvarez VA, Vazquez A (2007) Mater Sci Eng A 460:121

    Article  Google Scholar 

  11. Ludueña LN, Vazquez A, Alvarez VA (2008) J Appl Polym Sci 109(5):3148

    Article  Google Scholar 

  12. Guarás MP, Alvarez VA, Ludueña LN (2015) J Polym Res 22(9):1

    Article  Google Scholar 

  13. Modi S, Koelling K, Vodovotz Y (2009) Thermal and rheological properties of PHB synthesized with various hydroxyvalerate content for potential use in food packaging. In: Annual technical conference e ANTEC, conference proceedings 3, pp 1636–1640

  14. Erdal E, Kavaz D, Şam M, Demirbilek M, Demirbilek ME, Sağlam N, Denkbaş EB (2012) J Biomed Nanotechnol 8(5):800

    Article  CAS  Google Scholar 

  15. Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) J Appl Polym Sci 64:1849

    Article  CAS  Google Scholar 

  16. Averous L, Moro L, Dole P, Fringant C (2000) Polymer 41(11):4157

    Article  CAS  Google Scholar 

  17. Avella M, Errico ME, Laurienzo P, Martuscelli E, Raimo M, Rimedio R (2000) Polymer 41:3875

    Article  CAS  Google Scholar 

  18. Kweon DK, Kawasaki N, Nakayama A, Aiba S (2003) J Appl Polym Sci 92(3):1716

    Article  Google Scholar 

  19. Duquesne E, Rutot D, Degee P, Dubois P (2001) Macromol Symp 175(1):33

    Article  CAS  Google Scholar 

  20. Sawada H (1994) In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, p 298

  21. Yang S-R, Wu CH (1999) Macromol Symp 1999(144):101

    Article  Google Scholar 

  22. Rosa DS, Guedes CGF, Pedroso AG, Calil MR (2004) Mater Sci Eng C 24(5):663

    Article  Google Scholar 

  23. Erdman MD, Erdman BA (1984) Econ Bot 38(3):332

    Article  Google Scholar 

  24. Erdman MD (1986) Cereal Chem 63:277

    Google Scholar 

  25. Montaldo A (1972). Canna edulis. In: Cultivos de Raíces y Tubérculos Tropicales, Instituto Interamericano de Ciencias Agrícolas (IICA) de la O.E.A., Lima, Perú, Textos y Materiales de Enzeñanza. No. 21

  26. Chaparro R, Cortés H (1978) Canna edulis Kerr. Cultivo. Industrialización. Utilidad Forrajera. In: Temas de Orientación Agropecuaria, (Edit.) Ruíz, R., Bogotá, Colombia, vol 131

  27. Pérez E, Lares M, González Z (1997) J Agr Food Chem 45(7):2546

    Article  Google Scholar 

  28. Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2013) Food Hydrocoll 30(2):681

    Article  CAS  Google Scholar 

  29. Pérez E, Bahnassay Y, Breene W (1993) Starch Stärke 45(6):211

    Article  Google Scholar 

  30. Pacheco E (2001) Acta Cient Venez 52(4):278

    Google Scholar 

  31. AACC (2003) Approved methods of the American association of cereal chemists. Methods no. 44-15A, 30-10, 08-01, 46-13, 02-52 and 02-31. American Association of Cereal Chemists, St. Paul

  32. Van Soest PU, Wine RH (1967) J Assoc Off Anal Chem 50(1):50

    Google Scholar 

  33. Pérez E, Gilbert O, Rolland-Sabaté A, Jiménez Y, Sánchez T, Giraldo A, Pontoire B, Guilois S, Lahon M-C, Reynes M, Dufour D (2010) J Agric Food Chem 59(1):263

    Article  Google Scholar 

  34. Pérez E, Rolland-Sabaté A, Dufour D, Guzmán R, Tapia M, Raymundez M, Ricci J, Guilois S, Pontoire B, Reynes M, Gilbert O (2013) Carbohydr Polym 98:650

    Article  Google Scholar 

  35. Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014) J Polym Biopolym Phys Chem 2(1):1

    Google Scholar 

  36. Mollega IP (2008) Caracterización y biodegradación de mezclas de policaprolactona y poliácido láctico con almidón de yuca. Tesis de Maestría. Universidad Simón Bolívar, Caracas, Venezuela. http://159.90.80.55/tesis/000144538.pdf

  37. Maliger R, Halley PJ (2014) Chapter 11. Reactive extrusion for thermoplastic starch-polymer blends. In: Halley PJ, Avérous LR (eds) Starch polymers: from genetic engineering to green applications. Elsevier, Amsterdam, pp 291–317

    Chapter  Google Scholar 

  38. AOAC (1990) Official methods of analysis, 13th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  39. Romero-Bastida CA, Bello-Péreza LA, García MA, Martino MN, Solorza-Feriaa J, Zaritzkyb NE (2005) Carbohydr Polym 60:235

    Article  CAS  Google Scholar 

  40. Hu G, Chen J, Gao J (2009) Carbohydr Polym 76:291

    Article  CAS  Google Scholar 

  41. Hermans PH, Weidinger A (1961) Makromol Chem 44:24

    Article  Google Scholar 

  42. ISO 527-2 (1996) Plastics–determination of tension properties—part, 2

  43. Pelissari FM, Andrade-Mahecha MM, Sobral PJDA, Menegalli FC (2012) Starch Stärke 64(5):382

    Article  CAS  Google Scholar 

  44. Gallardo T, Bowler P (1987) Morphology and composition of starch. In: Galliard T (ed) Starch: properties and potential, critical reports on applied chemistry, vol 13. Society of Chemical Industry by John Wiley and Sons, vol 6, pp 115–149

  45. Jay JM (1996) Modern food microbiology, 5th edn. Chapman and Hall, New York

    Book  Google Scholar 

  46. Sívoli L, Pérez E, Rodríguez P, De Abrisqueta A, Raymúndez MB (2005) Acta Microscópica 14 (1 y 2):5

  47. Pérez E, Segovia X, Tapia MA, Schroeder M (2012) J Cell Plast 48(6):545

    Article  Google Scholar 

  48. Eggleston G, Swennen R, Akoni S (1992) Starch Stärke 44(4):121

    Article  CAS  Google Scholar 

  49. Pérez-Sira E (1997) Starch Stärke 49(2):45

    Article  Google Scholar 

  50. Gutiérrez TJ, Guzmán R, Medina M, Famá L (2016) Int J Biol Macromol 82:395

    Article  Google Scholar 

  51. Singh BR (2000) Infrared analysis of peptides and proteins-principles and applications. American Chemical Society, Washington

    Google Scholar 

  52. Vicentini NM, Dupuy N, Leitzelman M, Cereda MP, Sobral PJA (2005) Spectrosc Lett 38(6):749

    Article  CAS  Google Scholar 

  53. Kapusniak J, Siemion P (2007) J Food Eng 78(1):323

    Article  CAS  Google Scholar 

  54. Rasper V (1982) Theoretical aspects of amilographology. In: Shuey WC, Tipples KH (eds) The amylograph handbook, chapter 1. AACC, Sto Paul

    Google Scholar 

  55. Hoseney RC (1986) Principles of cereal science and technology. American Association of Cereal Chemists Inc, St. Paul

    Google Scholar 

  56. Zhou M, Robards K, Glennie-Holmes M, Helliwell S (1998) Cereal Chem 75(3):273

    Article  CAS  Google Scholar 

  57. Harper JM, Tribelhorn RE (1992) In: Kokini JL, Ho CT, Karwe MV (eds) Food extrusion science and technology. Marcel Dekker Inc., New York, pp 653–667

  58. da Mota RV, Lajolo FM, Cordenunsi BR, Ciacco C (2000) Starch Stärke 52(2–3):63

    Article  Google Scholar 

  59. Yu S, Ma Y, Menager L, Sun DW (2012) Food Bioprocess Technol 5(2):626

    Article  CAS  Google Scholar 

  60. de la Torre-Gutiérrez L, Chel-Guerrero LA, Betancur-Ancona D (2008) Food Chem 106(3):1138

    Article  Google Scholar 

  61. Moorthy SN, Rickard J, Blanshard JM (1996) In: Dufour D, O’Brien GM, Best R (eds) Cassava flour and starch: progress in research and development. Cali, CIAT, pp 150–155

    Google Scholar 

  62. Osman EM (1967) In: Whistler RL, Paschall EF (eds) Starch chemistry and technology. Academic Press, New York, pp 163–215

    Google Scholar 

  63. Zaidul ISM, Absar N, Kim SJ, Suzuki T, Karim AA, Yamauchi H, Noda T (2008) J Food Eng 86(1):68

    Article  Google Scholar 

  64. Famá L, Bittante AMB, Sobral PJ, Goyanes S, Gerschenson LN (2010) Mater Sci Eng C 30(6):853

    Article  Google Scholar 

  65. Gontard N, Guilbert S, Cuq JL (1992) J Food Sci 57(1):190

    Article  CAS  Google Scholar 

  66. Bikiaris D, Prinos J, Koutsopoulos K, Vouroutzis N, Pavlidou E, Frangis N, Panayiotou C (1998) Polym Degrad Stab 59(1):287

    Article  CAS  Google Scholar 

  67. Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Food Hydrocoll 54:234

    Article  Google Scholar 

  68. García-Tejeda YV, López-González C, Pérez-Orozco JP, Rendón-Villalobos R, Jiménez-Pérez A, Flores-Huicochea E, Solorza-Feria J, Bastida CA (2013) LWT Food Sci Technol 54:447

    Article  Google Scholar 

  69. Tapia-Blácido DR (2006) Films based on derivates of amaranth for use in foods. PhD thesis, Unicamp, Brazil

  70. Araujo-Farro PC (2008) Development and optimization of biodegradables films made of products derivated from “royal” variety quinoa (Chenopodium quinoa Willdenow) seeds. PhD thesis, Unicamp, Brazil

  71. Andrade-Mahecha MM (2009) Development and characterization of films based on Canna indica L. flour. Master thesis, Unicamp, Brazil

  72. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Biomacromolecules 7:531

    Article  CAS  Google Scholar 

  73. Kristo E, Biliaderis CG (2007) Carbohydr Polym 68:146

    Article  CAS  Google Scholar 

  74. Ninago MD, López OV, Lencina MS, García MA, Andreucetti NA, Ciolino AE, Villar MA (2015) Carbohydr Polym 134:205

    Article  CAS  Google Scholar 

  75. Ortega-Toro R, Contreras J, Talens P, Chiralt A (2015) Food Packag Shelf Life 5:10

    Article  Google Scholar 

  76. Zobel HF (1992) Starch granule structure in: developments in carbohydrate chemistry. H.F. Zobel and R.J. Alexandes, Edicion A.A.C.C

  77. Bertuzzi MA, Castro EF, Armada M, Gottifredi JG (2007) J Food Eng 80(3):972

    Article  CAS  Google Scholar 

  78. Marques PT, Lima AMF, Bianco G, Laurindo JB, Borsali R, Le Meins JF, Soldi V (2006) Polym Degrad Stab 91(4):726

    Article  CAS  Google Scholar 

  79. Ayala G, Agudelo A, Vargas R (2012) Dyna 79(171):138

    Google Scholar 

  80. Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Carbohydr Polym 52(2):101

    Article  CAS  Google Scholar 

  81. Liu H, Xie F, Yu L, Chen L, Li L (2009) Prog Polym Sci 34(12):1348

    Article  CAS  Google Scholar 

  82. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2015) Polymer 7(6):1106

    Article  CAS  Google Scholar 

  83. Cyras VP, Tolosa Zenklusen MC, Vazquez A (2006) J Appl Polym Sci 101(6):4313

    Article  CAS  Google Scholar 

  84. Mathew S, Abraham TE (2008) Food Hydrocoll 22(5):826

    Article  CAS  Google Scholar 

  85. Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2015) Proc Mater Sci 8:304

    Article  Google Scholar 

  86. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Carbohydr Polym 69(4):748

    Article  CAS  Google Scholar 

  87. Liu X, Yu L, Liu H, Chen L, Li L (2008) Polym Degrad Stab 93(1):260

    Article  CAS  Google Scholar 

  88. Hubackova J, Dvorackova M, Svoboda P, Mokrejs P, Kupec J, Pozarova I, Alexy P, Bugaj P, Machovsky M, Koutny M (2013) Polym Test 32(6):1011

    Article  CAS  Google Scholar 

  89. Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Lin S, Xiong H (2014) Carbohydr Polym 102:746

    Article  CAS  Google Scholar 

  90. Ruiz G (2006) Ingeniería y Ciencia 2(4):5

    Google Scholar 

  91. Patel P, Hull TR, McCabe RW, Flath D, Grasmeder J, Percy M (2010) Polym Degrad Stab 95(5):709

    Article  CAS  Google Scholar 

  92. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Food Packag Shelf Life 3:1

    Article  Google Scholar 

  93. Rosa DDS, Rodrigues TC, Graças Fassina Guedes CD, Calil MR (2003) J Appl Polym Sci 89(13):3539

    Article  CAS  Google Scholar 

  94. Corradini E, Mattoso LC, Guedes CGF, Rosa DS (2004) Polym Adv Technol 15(6):340

    Article  CAS  Google Scholar 

  95. Shellhammer TH, Krochta JM (1997) Edible coatings and film barriers. In: Gunstone FD, Padley FB (eds) Lipid technologies and applications. Marcel Dekker, New York, pp 453–479

    Google Scholar 

  96. Batista JA, Tanada-Palmu PS, Grosso CRF (2005) Ciencia e Tecnol Alime 25:781

    Article  CAS  Google Scholar 

  97. Ishiaku US, Pang KW, Lee WS, Ishak ZM (2002) Eur Polym J 38(2):393

    Article  CAS  Google Scholar 

  98. Saavedra N, Algecira N (2010) Evaluación de películas comestibles de almidón de yuca y proteína aislada de soya en la conservación de fresas. NOVA-Publicación científica en ciencias biomédicas. ISSN:1794-2470, 8(14):171–182

Download references

Acknowledgments

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417), Universidad Nacional de Mar del Plata (UNMdP), for the financial support and to Dr. Mirian Carmona-Rodríguez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomy J. Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, T.J., Alvarez, V.A. Films Made by Blending Poly(ε-Caprolactone) with Starch and Flour from Sagu Rhizome Grown at the Venezuelan Amazons. J Polym Environ 25, 701–716 (2017). https://doi.org/10.1007/s10924-016-0861-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0861-9

Keywords

Navigation