Skip to main content
Log in

Preparation and Fundamental Characterization of Cellulose Nanocrystal from Oil Palm Fronds Biomass

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this work was to isolate cellulose nanocrystal (CNC) from oil palm fronds (Elaeis guineensis) and its subsequent characterization. Isolation involves sodium hydroxide/anthraquinone pulping with mechanical refining followed by total chlorine free bleaching (includes oxygen delignification, hydrogen peroxide oxidation and peracetic acid treatment) before acid hydrolysis. Bleaching significantly decreased kappa number and increased α-cellulose percentage of fibers as confirmed by Technical Association of the Pulp and Paper Industry standards. Transmission electron microscopy (TEM), X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis revealed that acid hydrolysis along with bleaching improved crystallinity index and thermal stability of the extracted nanocrystals. It was observed that CNC maintained its cellulose 1 polymorph despite hydrolysis treatment. Mean diameter as observed by TEM and average fiber aspect ratio of obtained CNC was 7.44 ± 0.17 nm and 16.53 ± 3.52, respectively making it suitable as a reinforcing material for nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kopetz H (2007) Biomass–a burning issue: policies needed to spark the biomass heating market. Refocus 8(2):52–58

    Article  Google Scholar 

  2. Owolabi AWT, Ghazali A, Wanrosli WD, Abbas FMA (2016) Effect of alkaline peroxide pre-treatment on microfibrillated cellulose from oil palm fronds rachis amenable for pulp and paper and bio-composite production. BioResources 11(2):3013–3026

    Article  Google Scholar 

  3. Khalil HPSA, Mohamed SA, Ridzuan R, Kamarudin H, Khairul A (2008) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polym Plast Technol Eng 47(3):273–280

    Article  Google Scholar 

  4. Khalil HPSA, Mohamed SA, Abdul KMO (2007) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1(2):220–232

    Google Scholar 

  5. Awalludin MF, Sulaiman O, Hashim R, Nadhari WNAW (2015) An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew Sust Energ Rev 50:1469–1484

    Article  CAS  Google Scholar 

  6. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021

    Article  CAS  Google Scholar 

  7. Khan A, Khan RA, Salmieri S, LeTien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohyd Polym 90(4):1601–1608

    Article  CAS  Google Scholar 

  8. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  9. Chong YH, Daud WRW, Poh BT, Ibrahim M, Leh CP (2015) Application of photo, peracetic acid, and combination pre-treatments in improving totally chlorine-free bleaching selectivity. BioResources 10(3):4110–4125

    Article  CAS  Google Scholar 

  10. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779

    Article  CAS  Google Scholar 

  11. Hu Z, Cranston ED, Ng R, Pelton R (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692

    Article  CAS  Google Scholar 

  12. Saritha S, Nair SM, Kumar NC (2013) Nano-ordered cellulose containing iα crystalline domains derived from the algae chaetomorpha antennina. BioNanoScience 3(4):423–427

    Article  Google Scholar 

  13. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99

    Article  CAS  Google Scholar 

  14. Dufresne A (2012) Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int Polym Proc 27(5):557–564

    Article  CAS  Google Scholar 

  15. Jan JS, Chen PS, Hsieh PL, Chen BY (2012) Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides. ACS Appl Mater Interfaces 4(12):6865–6874

    Article  CAS  Google Scholar 

  16. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17(5):977–985

    Article  CAS  Google Scholar 

  17. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crop Prod 40:232–238

    Article  CAS  Google Scholar 

  18. Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym 93(2):628–634

    Article  Google Scholar 

  19. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohyd Polym 127:202–208

    Article  CAS  Google Scholar 

  20. Costa MM, Colodette JL (2007) The impact of kappa number composition on eucalyptus kraft pulp bleachability. Braz J Chem Eng 24(1):61–71

    Article  CAS  Google Scholar 

  21. Prez J, Munozorado J, de la Rubia TD, Martinez J (2002) Biodegradation and biological treatments of cellulose hemicellulose and lignin an overview. Int Microbiol 5(2):53–63

    Article  Google Scholar 

  22. Leh CP, Rosli WW, Zainuddin Z, Tanaka R (2008) Optimisation of oxygen delignification in production of totally chlorine-free cellulose pulps from oil palm empty fruit bunch fibre. Ind Crop Prod 28(3):260–267

    Article  CAS  Google Scholar 

  23. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33(1):13–24

    Article  CAS  Google Scholar 

  24. Parida KN, Moorthy JN (2015) Synthesis of o-carboxyarylacrylic acids by room temperature oxidative cleavage of hydroxynaphthalenes and higher aromatics with oxone. J. Org. Chem 80:8354–8360

    Article  CAS  Google Scholar 

  25. Yoon DE, Hwang C, Kang NR, Lee U, Ahn D, Kim JY, Song HK (2016) Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders. ACS Appl Mater Interfaces 8:4042–4047

    Article  CAS  Google Scholar 

  26. Wahlström RM, Suurnäkki A (2015) Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem 17(2):694–714

    Article  Google Scholar 

  27. Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohyd Polym 142:158–166

    Article  Google Scholar 

  28. de Morais TE, Bondancia TJ, Teodoro KB, Corrêa AC, Marconcini JM, Mattoso LH (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33(1):63–66

    Article  Google Scholar 

  29. Siqueira G, Bras J, Dufresne A (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Article  Google Scholar 

  30. Siqueira G, Tapin LS, Bras J, da Silva PD, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158

    Article  CAS  Google Scholar 

  31. Subhedar PB, Parag RG (2014) Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason Sonochem 21(1):216–225

    Article  CAS  Google Scholar 

  32. Rosa SM, Rehman N, de Miranda MI, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138

    Article  CAS  Google Scholar 

  33. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  34. Moriana R, Vilaplana F, Karlsson S, Ribes A (2014) Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohyd Polym 112:422–431

    Article  CAS  Google Scholar 

  35. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LH, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81(1):83–92

    Article  CAS  Google Scholar 

  36. Ciupină VI, Zamfirescu S, Prodan G (2007) Evaluation of mean diameter values using scherrer equation applied to electron diffraction images. Springer. Netherlands 231–237

  37. Khalil HA, Yusra AI, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crop Prod 31(1):113–121

    Article  Google Scholar 

  38. Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind Crop Prod 42:480–488

    Article  Google Scholar 

  39. Lionetto F, Del SR, Cannoletta D, Vasapollo G, Maffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910–1922

    Article  CAS  Google Scholar 

  40. Mirhosseini H, Tan CP, Hamid NSA, Yusof S (2008) Effect of Arabic gum, xanthan gum and orange oil contents on zeta-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf A 315:47–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Universiti Sains Malaysia for the awarded Postdoctoral Fellowship. The authors are gratefully acknowledged Universiti Sains Malaysia, Penang, Malaysia for providing Research University Grant (RUI-1001/PTEKIND/814255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaturbhuj K. Saurabh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dungani, R., Owolabi, A.F., Saurabh, C.K. et al. Preparation and Fundamental Characterization of Cellulose Nanocrystal from Oil Palm Fronds Biomass. J Polym Environ 25, 692–700 (2017). https://doi.org/10.1007/s10924-016-0854-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0854-8

Keywords

Navigation