Skip to main content

Advertisement

Log in

Phosphogypsum Waste Used as Reinforcing Fillers in Polypropylene Based Composites: Structural, Mechanical and Thermal Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The industrial production of wet phosphoric acid in Morocco led to controversial stockpiling of waste phosphogypsum by-products resulting in the release of significant amounts of toxic impurities in salt marshes. In the framework of fighting against global climate change and efforts to reduce toxic industrial wastes (phosphate industry), this work presents a new polymer composite based on phosphogypsum (PhG) and polypropylene (PP).The compounds were produced by twin-screw extrusion and injection molding. The morphological results show that good affinity between PhG and PP led to good particle dispersion/distribution in the polymer matrix. Thermal characterizations showed that PhG particles improved the thermal stability of PP with a 50 °C increase at 40 wt%. The optimum tensile modulus was also obtained at 40 wt% with a 74 % increase over neat PP. Dynamical mechanical analysis showed that PhG addition can improve the viscoelastic properties of PP for potential applications under dynamic stress. Overall, it can be concluded that PhG is potential reinforcing filler for the production of PP composites and represents a promising avenue for the valorization of this waste as a new raw material while resolving some environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ridzuan MJM, Abdul Majid MS, Afendi M, Aqmariah Kanafiah SN, Zahri JM, Gibson AG (2016) Mater Des 89:839

    Article  CAS  Google Scholar 

  2. Essabir H, Rodrigue D, Bouhfid R, Qaiss A (2016) Polym Compos. doi:10.1002/pc.23895

    Google Scholar 

  3. Essabir H, Raji M, Bouhfid R, Qaiss A (2016) In: Jawaid M, Qaiss A, Bouhfid R (eds) Nanoclay reinforced polymer composites. Springer, Switzerland, pp 29–49

    Google Scholar 

  4. Raji M, Essabir H, Essassi EM, Rodrigue D, Bouhfid R, Qaiss A (2016) Polym Compos. doi:10.1002/pc.24096

    Google Scholar 

  5. Siracusa AG, La Rosa AD, Siracusa V, Trovato M (2001) J Polym Envron 9:157

    Article  CAS  Google Scholar 

  6. Ayrilmis N, Kaymakci A, Ozdemir F (2013) J Indus Eng Chem 19:908

    Article  CAS  Google Scholar 

  7. Essabir H, Boujmal R, Bensalah M-O, Rodrigue D, Bouhfid R, Qaiss A (2016) Mech Mater 98:36

    Article  Google Scholar 

  8. Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, Qaiss A (2015) Mater Des 68:104

    Article  CAS  Google Scholar 

  9. Jain S, Misra M, Mohanty AK, Ghosh AK (2012) J Polym Envron 20:1027

    Article  CAS  Google Scholar 

  10. Boujmal R, Essabir H, Nekhlaoui S, Bensalah MO, Bouhfid R, Qaiss A (2014) J Biobased Mater Bioenergy 8:246

    Article  CAS  Google Scholar 

  11. Zhai W, Wang Y, Deng Y, Gao H, Lin Z, Li M (2014) J Hazard Mater 270:137

    Article  CAS  Google Scholar 

  12. Zheng Y, Shen Z, Cai C, Ma S, Xing Y (2009) J Hazard Mater 163:600

    Article  CAS  Google Scholar 

  13. Guo J, Tang Y, Xu Z (2010) J Hazard Mater 179:203

    Article  CAS  Google Scholar 

  14. Li H-Y, Tan Y-Q, Zhang L, Zhang Y-X, Song Y-H, Ye Y, Xia M-S (2012) J Hazard Mater 217:256

    Article  Google Scholar 

  15. Hong CK, Hwang I, Kim N, Park DH, Hwang BS, Nah C (2008) J Indus Eng Chem 14:71

    Article  CAS  Google Scholar 

  16. Zhu YD, Allen GC, Jones PG, Adams JM, Gittins DI, Heard PJ, Skuse DR (2014) Compos Part A. 60:38

    Article  CAS  Google Scholar 

  17. Nekhlaoui S, Essabir H, Bensalah MO, Fassi-Fehri O, Qaiss A, Bouhfid R (2014) Mater Des. 53:741

    Article  CAS  Google Scholar 

  18. Nekhlaoui S, Essabir H, Kunal D, Sonakshi M, Bensalah MO, Bouhfid R, Qaiss A (2015) Polym Compos 36:675

    Article  CAS  Google Scholar 

  19. Essabir H, Bensalah MO, Bouhfid R, Qaiss A (2014) J Biobased Mater Bioenergy 8:344

    Article  CAS  Google Scholar 

  20. Castillo LA, López OV, Ghilardi J, Villar MA, Barbosa SE, García MA (2015) Food Hydrocoll 51:432

    Article  CAS  Google Scholar 

  21. Herrera-Ramírez LC, Castell P, Fernández-Blázquez JP, Fernández Á, de Villoria RG (2015) Compos Sci Technol 111:9

    Article  Google Scholar 

  22. Zakaria MY, Sulong AB, Sahari J, Suherman H (2015) Compos Part B: Eng 83:75

    Article  CAS  Google Scholar 

  23. Man C, Zhang C, Liu Y, Wang W, Ren W, Jiang L, Reisdorffer F, Nguyen TP, Dan Y (2012) Polym Degrad Stabil 97:856

    Article  CAS  Google Scholar 

  24. El Mechtali FZ, Essabir H, Nekhlaoui S, Bensalah MO, Jawaid M, Bouhfid R (2015) J Bionic Eng 12:483

    Article  Google Scholar 

  25. Essabir H, Hilali E, El Minor H, Bensalah MO, Bouhfid R, Qaiss A (2015) J Biobased Mater Bioenergy 9:350

    Article  CAS  Google Scholar 

  26. Rutherford PM, Dudas MJ, Arocena JM (1996) Sci Total Environ 180:201

    Article  CAS  Google Scholar 

  27. Lopez R, Valero A, Nieto J (2007) J Hazard Mater 148:745

    Article  Google Scholar 

  28. Mohamed KR, Mousa SM, El Bassyouni GT (2014) Mater. Res. Bull. 50:432

    Article  CAS  Google Scholar 

  29. Oruh SC, Ergun ON (2010) J Hazard Mater 173:468

    Article  Google Scholar 

  30. Jasinski SM (2012) Phosphate rock. In: Mineral commodity summaries. U.S. Geological Survey 118

  31. ISO 527-1 (2012) Plastics—determination of tensile properties—part 1: general principles

  32. ASTM: D 4092-01 (2001) Standard terminology for plastics: dynamic mechanical properties

  33. Ajam L, Ouezdou MB, Felfoul HS, El Mensi R (2009) Build Mater 23:3240

    Article  Google Scholar 

  34. El-Didamony H, Gado HS, Awwad NS, Fawzy MM, Attallah MF (2013) J Hazard Mater 244–245:596

    Article  Google Scholar 

  35. Zhang D, Luo H, Zheng L, Wang K, Li H, Wang Y, Feng H (2012) J Hazard Mater 241–242:418

    Article  Google Scholar 

  36. Olmez H, Yılmaz VT (1988) Cem Concr Res 18:449

    Article  CAS  Google Scholar 

  37. Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  38. Kybartien N, Leskevicien V, Valancius Z (2012) Mater Sci 18:1392

    Google Scholar 

  39. Qaiss AEK, Bouhfid R, Essabir H (2015) In: Salit MS, Jawaid M, Yusoff NB, Enamul Hoque M (eds) Manufacturing of natural fibre reinforced polymer composites. Springer, Switzerland, pp 177–197

    Chapter  Google Scholar 

  40. Canut MMC, Jacomino VMF, Gomes KBAM, Yoshida MI (2008) Mater Charact 59:365

    Article  CAS  Google Scholar 

  41. Qaiss AEK, Bouhfid R, Essabir H (2014) In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy: processing and properties. Springer, Switzerland, pp 225–244

    Google Scholar 

  42. Essabir H, Achaby M, Hilali E-M, Bouhfid R, Qaiss A (2015) J Bionic Eng 12:129

    Article  Google Scholar 

  43. Kakou CA, Essabir H, Bensalah MO, Bouhfid R, Rodrigue D, Qaiss A (2015) J Reinf Plast Compos. doi:10.1177/0731684415596235

    Google Scholar 

  44. Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A (2016) Mech Mater 93:134

    Article  Google Scholar 

  45. Essabir H, Bensalah M-O, Rodrigue D, Bouhfid R, Qaiss A (2016) Carbohydr Polym 143:70

    Article  CAS  Google Scholar 

  46. Qaiss AEK, Bouhfid R, Essabir H (2015) In: Hakeem KR, Jawaid M, Alothman OY (eds) Biomass and Bioenergy Agricultural biomass based potential materials. Springer, Switzerland, pp 305–339

    Google Scholar 

Download references

Acknowledgments

This work was supported by MAScIR; Moroccan Foundation for Advanced Science, Innovation and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abou el kacem Qaiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essabir, H., Nekhlaoui, S., Bensalah, M.O. et al. Phosphogypsum Waste Used as Reinforcing Fillers in Polypropylene Based Composites: Structural, Mechanical and Thermal Properties. J Polym Environ 25, 658–666 (2017). https://doi.org/10.1007/s10924-016-0853-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0853-9

Keywords

Navigation