Journal of Polymers and the Environment

, Volume 25, Issue 3, pp 599–605 | Cite as

A Novel and Formaldehyde-Free Preparation Method for Lignin Amine and Its Enhancement for Soy Protein Adhesive

  • Junna Xin
  • Pei Zhang
  • Michael P. Wolcott
  • Jinwen Zhang
  • William C. Hiscox
  • Xiao Zhang
Original Paper


In this work, a novel two-step process to prepare primary lignin amine was developed. The lignin used in this study was obtained from the residue of cellulosic sugar fermentation for bioethanol (referred as “lignin”). The lignin was initially oxidized through Fenton oxidation. The oxidized lignin was further converted to lignin amine by reductive amination. Ammonia was used in the second step leading to give the highly active primary lignin amine. The oxidation and reduction exhibited relatively high yields of 80.0 and 91.2 % respectively. For comparison, lignin was partially depolymerized via mild hydrogenolysis and then the partial depolymerized lignin was also converted to lignin amine using the same method. The obtained lignin amines were characterized in detail using elemental analysis, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy (FTIR). Further, modification of soy protein adhesive by lignin amine was exemplified in wood bonding, and the results indicated that addition of lignin amine greatly increased water resistance of soy protein adhesives.


Lignin Lignin amine Fenton oxidation Reductive amination Soy protein adhesive 



This work was made possible by the Northwest Advanced Renewables Alliance (NARA) funded by the Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30416 of the USDA and National Institute of Food and Agriculture and from the Sungrant/United States Department of Transportation (Contract no. T0013G-A-9). We also like to acknowledge Dr. Johnway Gao for his technical support with preparation of enzymolysis lignin.


  1. 1.
    Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L et al (1999) Appl Microbiol Biotechnol 52:741CrossRefGoogle Scholar
  2. 2.
    Zhang S, Marechal F, Gassner M, Perin-Levasseur Z, Qi W et al (2009) Energy Fuels 23:1759CrossRefGoogle Scholar
  3. 3.
    Kleinert M, Barth T (2008) Energy Fuels 22:1371CrossRefGoogle Scholar
  4. 4.
    Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Nature 515:249CrossRefGoogle Scholar
  5. 5.
    El Mansouri N-E, Yuan Q, Huang F (2011) BioResources 6:2492Google Scholar
  6. 6.
    Kishi H, Fujita A, Miyazaki H, Matsuda S, Murakami A (2006) J Appl Polym Sci 102:2285CrossRefGoogle Scholar
  7. 7.
    Stewart D (2008) Ind Crops Prod 27:202CrossRefGoogle Scholar
  8. 8.
    Du X, Li J, Lindstroem ME (2014) Ind Crops Prod 52:729CrossRefGoogle Scholar
  9. 9.
    Qin J, Woloctt M, Zhang J (2013) ACS Sustain Chem Eng 2:188CrossRefGoogle Scholar
  10. 10.
    Pan X, Saddler JN (2013) Biotechnol Biofuels 6:12CrossRefGoogle Scholar
  11. 11.
    Li Y, Ragauskas AJ (2012) J Wood Chem Technol 32:210CrossRefGoogle Scholar
  12. 12.
    Feng P, Chen F (2012) BioResources 7:2860CrossRefGoogle Scholar
  13. 13.
    Abdul Khalil HPS, Marliana MM, Alshammari T (2011) BioResources 6:5206Google Scholar
  14. 14.
    Huo SP, Nie MC, Kong ZW, Wu GM, Chen J (2012) J Appl Polym Sci 125:152CrossRefGoogle Scholar
  15. 15.
    Yue X, Chen F, Zhou X (2011) BioResources 6:2022Google Scholar
  16. 16.
    Liu J, Liu H-F, Deng L, Liao B, Guo Q (2013) J Appl Polym Sci 130:1736CrossRefGoogle Scholar
  17. 17.
    Schilling P, Brown PE (1988) Cationic and anionic lignin amines. U.S. Patent 4775744Google Scholar
  18. 18.
    Hoftiezer HW, Watts DJ, Takahashi A (1984) Cationic reaction product of kraft lignin with aldehyde and polyamine. U.S. Patent 4455257Google Scholar
  19. 19.
    Dong H, Peng W, Lewis LN (2013) Formaldehyde-free lignin-amine coagulants for coagulating suspended materials in water stream. U.S. Patent 9181405Google Scholar
  20. 20.
    Pan H, Sun G, Zhao T (2013) Int J Biol Macromol 59:221CrossRefGoogle Scholar
  21. 21.
    Falkehag SI, Dilling P (1973) Process for producing cationic lignin amines. U.S. Patent 3718639Google Scholar
  22. 22.
    Zhang J, Lin X, Luo X, Zhang C, Zhu H (2011) Chem Eng J (Amsterdam, Netherlands) 168:1055Google Scholar
  23. 23.
    Lin X, Zhang J, Luo X, Zhang C (2011) Mater Sci Forum 695:117CrossRefGoogle Scholar
  24. 24.
    Xiang Q, Lee YY (2000) Appl Biochem Biotechnol 84–6:153CrossRefGoogle Scholar
  25. 25.
    Passauer L, Fischer K, Liebner F (2011) Holzforschung 65:319Google Scholar
  26. 26.
    Ma R, Guo M, Zhang X (2014) ChemSusChem 7:412CrossRefGoogle Scholar
  27. 27.
    Shokrolahi A, Zali A, Keshavarz MH (2011) Green Chem Lett Rev 4:195CrossRefGoogle Scholar
  28. 28.
    Xin J, Zhang P, Wolcott MP, Zhang X, Zhang J (2014) Bioresour Technol 155:422CrossRefGoogle Scholar
  29. 29.
    Gao J, Anderson D, Levie B (2013) Biotechnol Biofuels 6:10CrossRefGoogle Scholar
  30. 30.
    Ben Hamadi N, Msaddek M (2011) C R Chim 14:997CrossRefGoogle Scholar
  31. 31.
    Lundquist K (1992) Proton (1H) NMR spectroscopy. In: Lin S, Dence C (eds) Methods in lignin chemistry. Springer, Berlin, pp 242–249CrossRefGoogle Scholar
  32. 32.
    Faix O (1992) Fourier transform infrared spectroscopy. Methods in lignin chemistry. Springer, Berlin, pp 83–109Google Scholar
  33. 33.
    Rodrigues J, Faix O, Pereira H (1998) Holzforschung 52:46CrossRefGoogle Scholar
  34. 34.
    Lin X, Zhou M, Wang S, Lou H, Yang D et al (2014) ACS Sustain Chem Eng 2:1902CrossRefGoogle Scholar
  35. 35.
    Yu M, Hwang J, Deming TJ (1999) J Am Chem Soc 121:5825CrossRefGoogle Scholar
  36. 36.
    Liu Y, Li K (2002) Macromol Rapid Commun 23:739CrossRefGoogle Scholar
  37. 37.
    Luo J, Luo J, Yuan C, Zhang W et al (2015) RSC Adv. 5:100849CrossRefGoogle Scholar
  38. 38.
    Xiao Z, Li Y, Wu X, Qi G, Li N et al (2013) Ind Crops Prod 50:501CrossRefGoogle Scholar
  39. 39.
    Li K, Geng X (2005) Macromol Rapid Commun 26:529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Junna Xin
    • 1
  • Pei Zhang
    • 1
  • Michael P. Wolcott
    • 1
  • Jinwen Zhang
    • 1
  • William C. Hiscox
    • 2
  • Xiao Zhang
    • 3
  1. 1.Composite Materials and Engineering CenterWashington State UniversityPullmanUSA
  2. 2.Nuclear Magnetic Resonance CenterWashington State UniversityPullmanUSA
  3. 3.Bioproducts, Science and Engineering Laboratory, Voiland School of Chemical Engineering and BioengineeringWashington State UniversityRichlandUSA

Personalised recommendations