Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradation of Natural Rubber and Natural Rubber Products by Streptomyces sp. Strain CFMR 7

  • 447 Accesses

  • 1 Citations


The rubber degrading activity of Streptomyces sp. CFMR 7 whose whole genome sequence was recently determined was tested with non-vulcanized fresh latex and common vulcanized rubber products such as latex glove, latex condom and latex car tyre. The degradation activity was unequivocally demonstrated by scanning electron microscopy with respect to microbial colonization efficiency, disintegration of rubber material and biofilm formation after 3, 6 and 9 months of inoculation. Fourier transform infrared spectroscopy comprising the attenuated total reflectance analysis on these inoculated products revealed insights into the biodegradation mechanism of this strain whereby, a decrease in the number of cis -1,4 double bonds in the polyisoprene chain, the appearance of ketone and aldehyde groups formation indicating an oxidative attack at the double bond of rubber hydrocarbon. In the presence of strain Streptomyces sp. CFMR 7, gel permeation chromatography analysis revealed a significant shift of the molecular weight distribution to lower values. Clear decrease in the molecular weight was observed over 3, 6 and 9 months of cultivation on fresh latex samples compared to other vulcanized products. No shift in the molecular weight distribution was observed for non-inoculated control. These results clearly showed that Streptomyces sp. CFMR 7 was able to cleave the carbon backbone of poly (cis -1,4-isoprene). Although this strain was able to degrade both non-vulcanized and vulcanized rubber products, faster degradation was obtained with natural rubber and rubber products with low complexity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Bredberg K, Christiansson M, Stenberg B, Holst O (2001) Biotechnological processes for recycling of rubber products. In: Koyama T, Steinbüchel A (eds) Biopolymers. Wiley, Germany, pp 361–375

  2. 2.

    Gronover CS, Wahler D, Prüfer D (2011) Natural rubber biosynthesis and physic-chemical studies on plant derived latex. In: Elnashar M (ed) Biotechnology of Biopolymers. Intech Open Acess Publisher, Croatia, pp 75–88

  3. 3.

    Van BJB, Poirier Y (2007) Trends Biotechnol 25(11):522–529

  4. 4.

    Yikmis M, Steinbüchel A (2012) Appl Environ Microbiol 78(13):4543–4551

  5. 5.

    Malaysian Rubber Board. ‘Natural Rubber Statistics, (2015)’. http://www.lgm.gov.my/nrstat/nrstats.pdf. Retrieved 6 May 2016

  6. 6.

    Rook JJ (1955) Appl Microbiol 3(5):302

  7. 7.

    Rose K, Steinbüchel A (2005) Appl Environ Microbiol 71(6):2803–2812

  8. 8.

    Tsuchii A, Suzuki T, Takeda K (1985) Appl Environ Microbiol 50(4):965–970

  9. 9.

    Heisey RM, Papadatos S (1995) Appl Environ Microbiol 61(8):3092–3097

  10. 10.

    Jendrossek D, Tomasi G, Kroppenstedt RM (1997) FEMS Microbiol Lett 150(2):179–188

  11. 11.

    Berekaa MM (2006) Biotechnology 5(3):234–239

  12. 12.

    Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M (2011) Enzyme Microb Technol 49(6):526–531

  13. 13.

    Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM (2002) Int J Syst Bacteriol 52(4):1133–1139

  14. 14.

    Kieser T (2001) Practical Streptomyces genetics (Ch1) John Innes Foundation. Norwich, UK

  15. 15.

    Chia KH, Nanthini J, Thottathil GP, Najimudin N, Haris MRHM, Sudesh K (2014) Polym Degrad 109:354–361

  16. 16.

    Nanthini J, Chia KH, Thottathil GP, Taylor TD, Kondo S, Najimudin N, Baybayan P, Singh S, Sudesh K (2015) J Biotechnol 214:47–48

  17. 17.

    Berekaa MM, Linos A, Reichelt R, Keller U, Steinbüchel A (2000) FEMS Microbiol Lett 184(2):199–206

  18. 18.

    Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbüchel A (2000) Appl Environ Microbiol 66(4):1639–1645

  19. 19.

    Bode HB, Zeeck A, Plückhahn K, Jendrossek D (2000) Appl Environ Microbiol 2000:3680–3685

  20. 20.

    Evans A, Evans R (2006) The composition of a tyre: typical components. The Waste and Resources Action Programme, UK

  21. 21.

    Rubbercare Protection Products Sdn Bhd (2016) Glove manufacturing process. http://www.rubbercare.com.my/index.html. Retrieved 29 Feb 2016

  22. 22.

    Ritex (2016) Condom production: giving a form to natural rubber latex. http://www.ritex.com/en-GB/brand/condom-production. Retrieved 29 Feb 2016

  23. 23.

    Manteca A, Sanchez J (2010) Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 1:560–566

  24. 24.

    Flemming HC (1998) Polym Degrad Stab 59(1):309–315

  25. 25.

    Vupputuri S, Fathepure BZ, Wilber GG, Sudoi E, Nasrazadani S, Ley MT, Ramsey JD (2015) Int Biodeterior Biodegrad 97:128–134

  26. 26.

    Shah AA, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Int Biodeterior Biodegrad 83:145–157

  27. 27.

    Yikmis M, Steinbüchel A (2012) Microbiol Open 1(1):13–24

  28. 28.

    Bode HB, Kerkhoff K, Jendrossek D (2001) Biomacromolecules 2(1):295–303

  29. 29.

    Hiessl S, Böse D, Oetermann S, Eggers J, Pietruszka J, Steinbüchel A (2014) Appl Environ Microbiol 80(17):5231–5240

Download references


This study was supported by USM Research University Grant (1001/PBIOLOGI/815069). Nanthini J is grateful to MyBrain15 program by the Ministry of Education Malaysia (MOE) for providing fellowship.

Author information

Correspondence to Kumar Sudesh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nanthini, J., Sudesh, K. Biodegradation of Natural Rubber and Natural Rubber Products by Streptomyces sp. Strain CFMR 7. J Polym Environ 25, 606–616 (2017). https://doi.org/10.1007/s10924-016-0840-1

Download citation


  • Streptomyces sp. CFMR 7
  • Rubber
  • Degradation
  • cis-1,4 double bonds