Skip to main content
Log in

Polyhydroxybutyrate-Based Nanocomposites with Cellulose Nanocrystals and Bacterial Cellulose

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyhydroxybutyrate (PHB) films nanoreinforced with hydrolyzed cellulose nanocrystals (CNC) and bacterial cellulose (BC) were prepared by solvent casting. The influence of different cellulose nanoparticles content (2, 4 and 6 wt% of CNC and 2 wt% of BC) on the PHB properties was studied. CNC nanocomposites presented good dispersion of the nanocrystals, improving transparency, mechanical and barrier properties of the PHB films. On the other hand, reduced thermal stability and mechanical properties were yielded by BC addition due to the intrinsic lower degradation temperature and higher length of the BC nanofibrils compared to CNC. Nanocomposites performance variation is mainly caused by the marked difference in nanoparticles structure. It was demonstrated that PHB–CNC films exhibited higher performance enhancement without detrimental effect of the pristine PHB properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442. doi:10.1016/j.chemosphere.2008.06.064

    Article  CAS  Google Scholar 

  2. Savenkova L, Gercberga Z, Nikolaeva V et al (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35:573–579. doi:10.1016/S0032-9592(99)00107-7

    Article  CAS  Google Scholar 

  3. Bucci DZ, Tavares LBB, Sell I (2007) Biodegradation and physical evaluation of PHB packaging. Polym Test 26:908–915. doi:10.1016/j.polymertesting.2007.06.013

    Article  CAS  Google Scholar 

  4. Plackett D, Vázquez A (2004) Natural polymer sources. In: Baillie C (ed) Green Compos. Woodhead Publishing Limited, Cambridge, pp 123–153

    Chapter  Google Scholar 

  5. Sangkharak Kanokphorn (2011) Utilization of biodiesel waste as a feedstock for the production of polyhydroxybutyrate by Cupriavidus necator. Afr J Biotechnol 10:17812–17824. doi:10.5897/AJB11.2184

    CAS  Google Scholar 

  6. Avella M, Martuscelli E, Raimo M (2000) Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545

    Article  CAS  Google Scholar 

  7. Erceg M, Kovačić T, Klarić I (2005) Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab 90:313–318. doi:10.1016/j.polymdegradstab.2005.04.048

    Article  CAS  Google Scholar 

  8. Angelini S, Cerruti P, Immirzi B et al (2016) Acid-insoluble lignin and holocellulose from a lignocellulosic biowaste: bio-fillers in poly(3-hydroxybutyrate). Eur Polym J 76:63–76. doi:10.1016/j.eurpolymj.2016.01.024

    Article  CAS  Google Scholar 

  9. Wang S, Song C, Chen G et al (2005) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76. doi:10.1016/j.polymdegradstab.2004.07.008

    Article  CAS  Google Scholar 

  10. Díez-Pascual AM, Díez-Vicente AL (2014) Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci 15:10950–10973. doi:10.3390/ijms150610950

    Article  Google Scholar 

  11. de Carvalho KCC, Montoro SR, Cioffi MOH, Voorwald HJC (2016) Polyhydroxyalkanoates and their nanobiocomposites with cellulose nanocrystals. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Des Appl. Nanostructured Polym. Blends Nanocomposite Syst. Elsevier, Oxford, pp 261–285

    Chapter  Google Scholar 

  12. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765. doi:10.3390/polym2040728

    Article  CAS  Google Scholar 

  13. Hu W, Chen S, Yang J et al (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi:10.1016/j.carbpol.2013.09.102

    Article  CAS  Google Scholar 

  14. de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi:10.1016/j.foodres.2009.03.019

    Article  Google Scholar 

  15. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739. doi:10.1002/pen.11821

    Article  CAS  Google Scholar 

  16. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  17. Cao Y, Zavattieri P, Youngblood J et al (2016) The relationship between cellulose nanocrystal dispersion and strength. Constr Build Mater 119:71–79. doi:10.1016/j.conbuildmat.2016.03.077

    Article  CAS  Google Scholar 

  18. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  19. Cherian BM, Leao AL, de Souza SF et al (2011) Cellulose nanocomposites for high-performance applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 539–587

    Chapter  Google Scholar 

  20. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395. doi:10.1002/pen.24127

    Article  CAS  Google Scholar 

  21. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  22. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. doi:10.1007/s12192-010-0223-9

    Article  CAS  Google Scholar 

  23. Cyras VP, Galego Fernández N, Vázquez A (1999) Biodegradable films from PHB-8HV copolymers and polyalcohols blends: crystallinity, dynamic mechanical analysis and tensile properties. Polym Int 48:705–712

    Article  CAS  Google Scholar 

  24. Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794. doi:10.1007/BF01026954

    Article  CAS  Google Scholar 

  25. Spence K, Habibi Y, Dufresne A (2011) Nanocellulose-based composites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 179–213

    Chapter  Google Scholar 

  26. Oh SY, Il Yoo D, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi:10.1016/j.carres.2005.08.007

    Article  CAS  Google Scholar 

  27. de Teixeira EM, Pasquini D, Curvelo AAS et al (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431. doi:10.1016/j.carbpol.2009.04.034

    Article  CAS  Google Scholar 

  28. Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436. doi:10.1016/j.indcrop.2012.10.014

    Article  Google Scholar 

  29. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi:10.1021/bm034519+

    Article  CAS  Google Scholar 

  30. Azizi Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whisker, their properties and their application in nanocomposites field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  31. Gunaratne LMWK, Shanks RA, Amarasinghe G (2004) Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta 423:127–135. doi:10.1016/j.tca.2004.05.003

    Article  CAS  Google Scholar 

  32. Pearce R, Marchessault R (1994) Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer (Guildf) 35:3990–3997. doi:10.1016/0032-3861(94)90285-2

    Article  CAS  Google Scholar 

  33. Ten E, Jiang L, Wolcott MP (2012) Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 90:541–550. doi:10.1016/j.carbpol.2012.05.076

    Article  CAS  Google Scholar 

  34. Simonsen J, Habibi Y (2009) Cellulose nanocrystals in polymer matrices. In: The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 273–292

  35. Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384. doi:10.1016/j.carbpol.2012.08.054

    Article  CAS  Google Scholar 

  36. Xu C, Qiu Z (2009) Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly(hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites. J Polym Sci Part B Polym Phys 47:2238–2246. doi:10.1002/polb.21821

    Article  CAS  Google Scholar 

  37. Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605. doi:10.1016/j.carbpol.2011.09.066

    Article  CAS  Google Scholar 

  38. Zhang J, Sato H, Noda I, Ozaki Y (2005) Conformation rearrangement and molecular dynamics of poly(3-hydroxybutyrate) during the melt-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules 38:4274–4281. doi:10.1021/ma0501343

    Article  CAS  Google Scholar 

  39. Mottin AC, Ayres E, Eliane A et al (2016) What changes in poly(3-hydroxybutyrate) (PHB) when processed as electrospun nanofibers or thermo-compression molded film? Mater Res 19:57–66

    Article  Google Scholar 

  40. de O Patrício PS, Pereira FV, dos Santos MC et al (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621. doi:10.1002/app.37811

    Article  Google Scholar 

  41. Fortunati E, Peltzer M, Armentano I et al (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956. doi:10.1016/j.carbpol.2012.06.025

    Article  CAS  Google Scholar 

  42. Avérous L, Pollet E (2012) Green Nano-Biocomposites. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 1–11

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CONICET (PIP 0014 y 0527) y CNR-CONICET Nº 1010, Agencia Nacional de Promoción Científica y Tecnológica (PICT’12 1983) and Universidad Nacional de Mar del Plata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Cyras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoane, I.T., Cerrutti, P., Vazquez, A. et al. Polyhydroxybutyrate-Based Nanocomposites with Cellulose Nanocrystals and Bacterial Cellulose. J Polym Environ 25, 586–598 (2017). https://doi.org/10.1007/s10924-016-0838-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0838-8

Keywords

Navigation