Effect of High Content of Deinking Paper Sludge (DPS) on the Reinforcement of HDPE

Abstract

Deinking paper sludge (DPS)/high density polyethylene (HDPE) composites with and without coupling agent (3 % of maleated polyethylene (MAPE)) were manufactured by twin-screw extrusion followed by injection molding with high percentages of DPS (0, 20, 30 and 40 %). The effects of DPS content and MAPE on the mechanical, thermal, and morphological properties of the DPS/HDPE composites were investigated. Increasing DPS content in composites increased the tensile and flexural modulus (E; MOE), tensile and flexural strength (Rm; MOR), while decreased elongation at break and Un-notched impact resistance due to a poor adhesion between the DPS and HDPE. The addition of DPS also improved the thermal stability and increased the composites crystallinity. High content of DPS (40 %) and 3 % MAPE achieved good interfacial adhesion between fibres of DPS and HDPE. Therefore, an increase is observed for Rm, MOR, ductility, and impact toughness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    European Commission (2008) European Commission, environmental, economic and social impacts of the use of sewage sludge on land. Final report part I: overview report

  2. 2.

    Beauchamp CJ, Charest MH, Gosselin A (2002) Examination of environmental quality of raw and composting de-inking paper sludge. Chemosphere 46:887–895

    CAS  Article  Google Scholar 

  3. 3.

    Chantigny MH, Angers DA, Beauchamp CJ (2000) Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Can J Soil Sci 80:99–105

    Article  Google Scholar 

  4. 4.

    Phillips VR, Kirkpatrick N, Scotford IM, White RP, Burton RGO (1997) The use of paper-mill sludges on agricultural land. Bioresour Technol 60:73–80

    CAS  Article  Google Scholar 

  5. 5.

    Fernández R, Nebreda B, De la Villa RV, García R, Frías M (2010) Mineralogical and chemical evolution of hydrated phases in the pozzolanic reaction of calcined paper sludge. Cem Concr Compos 32:775–782

    Article  Google Scholar 

  6. 6.

    Chahidi Elouazzani D (2005) Caractérisation physico-chimique et valorisation en bâtiment et travaux publics des cendres issues de l’incinération des boues de papeterie. PhD Thesis, Institut National des Sciences Appliquées de Lyon (available only in French)

  7. 7.

    Werther J, Ogada T (1999) Sewage sludge combustion. Prog Energy Combust Sci 25:55–116

    CAS  Article  Google Scholar 

  8. 8.

    McAuley B, Kunkel J, Manahan SE (2001) A new process for the drying and gasification of sewage sludge. Water Eng Manag 148:18–20

    Google Scholar 

  9. 9.

    Pakdel H, Roy C (1991) Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy Fuels 5:427–436

    CAS  Article  Google Scholar 

  10. 10.

    Lou R, Wu S, Lv G, Yang Q (2012) Energy and resource utilization of deinking sludge pyrolysis. Appl Energy 90:46–50

    CAS  Article  Google Scholar 

  11. 11.

    Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    CAS  Article  Google Scholar 

  12. 12.

    Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137

    CAS  Article  Google Scholar 

  13. 13.

    Ismail H, Rusli A, Rashid AA (2005) Maleated natural rubber as a coupling agent for paper sludge filled natural rubber composites. Polym Test 24:856–862

    CAS  Article  Google Scholar 

  14. 14.

    Qiao X, Zhang Y, Zhang Y (2003) Ink-eliminated paper sludge flour as filler for polypropylene. Polym Polym Compos 11:321–326

    CAS  Google Scholar 

  15. 15.

    Son J, Yang HS, Kim HJ (2004) Physico-mechanical properties of paper sludge-thermoplastic polymer composites. J Thermoplast Compos Mater 17:509–522

    CAS  Article  Google Scholar 

  16. 16.

    Ismail H, Salmah Bakar AA (2005) The effect of paper sludge content and size on the properties of polypropylene (PP)-ethylene propylene diene terpolymer (EPDM) composites. J Reinf Plast Compos 24:147–159

    CAS  Article  Google Scholar 

  17. 17.

    Salmah Ismail H, Bakar AA (2006) Effects of chemical modification of paper sludge filled polypropylene (PP)/ethylene propylene diene terpolymer (EPDM) composites. J Reinf Plast Compos 25:43–58

    CAS  Article  Google Scholar 

  18. 18.

    Salmah Ismail H, Bakar AA (2006) Properties of paper sludge filled polypropylene (PP)/ethylene propylene diene terpolymer (EPDM) composites: the effect of silane-based coupling agent. Intern J Polym Mater 55:643–662

    CAS  Article  Google Scholar 

  19. 19.

    Hamzeh Y, Ashori A, Mirzaei B (2011) Effects of waste paper sludge on the physico-mechanical properties of high density polyethylene/wood flour composites. J Polym Environ 19:120–124

    CAS  Article  Google Scholar 

  20. 20.

    Elloumi A, Makhlouf M, Elleuchi A, Bradai Ch (2016) The potential of deinking paper sludge for recycled HDPE reinforcement. J Polym Compos. doi:10.1002/pc.23975

  21. 21.

    Elloumi A, Makhlouf M, Elleuchi A, Bradai Ch (2016) Deinking sludge (DS), a new bio-filler for HDPE composites. Polym Plast Technol Eng 55:1012–1020

    CAS  Article  Google Scholar 

  22. 22.

    Geng X, Zhang SY, Deng J (2007) Characteristics of paper mill sludge and its utilization for the manufacture of medium density fiberboard. Wood Fiber Sci 39:345–351

    CAS  Google Scholar 

  23. 23.

    Migneault S, Koubaa A, Nadji H, Riedl B, Zhang SY, Deng J (2010) Medium-density fiberboard produced using pulp and paper sludge from different pulping processes. Wood Fiber Sci 42:292–303

    CAS  Google Scholar 

  24. 24.

    Migneault S, Koubaa A, Nadji H, Riedl B, Zhang SY, Deng J (2011) Binderless fiberboard made from primary and secondary pulp and paper sludge. Wood Fiber Sci 43:180–193

    CAS  Google Scholar 

  25. 25.

    Migneault S, Koubaa A, Riedl B, Nadji H, Deng J, Zhang SY (2011) Potential of pulp and paper sludge as a formaldehyde scavenger agent in MDF resins. Holzforschung 65:403–409

    CAS  Article  Google Scholar 

  26. 26.

    Qiao X, Zhang Y, Zhang Y, Zhu Y (2003) Ink-eliminated waste paper sludge flour-filled polypropylene composites with different coupling agent treatments. J Appl Polym Sci 89:513–520

    CAS  Article  Google Scholar 

  27. 27.

    Yuan X, Zhang Y, Zhang X (1999) Maleated polypropylene as a coupling agent for polypropylene-waste newspaper flour composites. J Appl Polym Sci 71:333–337

    CAS  Article  Google Scholar 

  28. 28.

    Hon DNS, Ren S (2003) Interfacial phenomena of newspaper fiber-reinforced polypropylene composite, part I: the development of interfacial interaction. J Reinf Plast Compos 22:957–971

    CAS  Article  Google Scholar 

  29. 29.

    Tserki V, Matzinos P, Kokkou S, Panayiotou C (2005) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A: Appl Sci Manuf 36:965–974

    Article  Google Scholar 

  30. 30.

    TAPPI T211 om-93 (2000) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. In: TAPPI test methods. TAPPI Press, Atlanta

  31. 31.

    Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg 35:298–307

    CAS  Article  Google Scholar 

  32. 32.

    ASTM D 790 (2003) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, p 11

    Google Scholar 

  33. 33.

    ASTM D 638 (2003) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, p 15

    Google Scholar 

  34. 34.

    ASTM D 4812 (1999) Standard test method for unnotched cantilever beam impact resistance of plastics. ASTM International, West Conshohocken, p 11

    Google Scholar 

  35. 35.

    Bouafif H, Koubaa A, Perré P, Cloutier A, Riedl B (2009) Wood particle/high-density polyethylene composites: thermal sensitivity and nucleating ability of wood particles. J Appl Polym Sci 113:593–600

    CAS  Article  Google Scholar 

  36. 36.

    Wunderlich B (1973) Macromolecular physics II. Academic Press, New York

    Google Scholar 

  37. 37.

    Edalatmanesh M, Sain M, Liss SN (2010) Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques. Water Sci Technol 62:2846–2853

    CAS  Article  Google Scholar 

  38. 38.

    Mishra SP (2010) Bleaching of cellulosic paper fibres with ozone-effect on the fibre properties. PhD Thesis, Institut Polytechnique de Grenoble, France

  39. 39.

    Méndez A, Fidalgo JM, Guerrero F, Gascó G (2009) Characterization and pyrolysis behaviour of different paper mill waste materials. Anal Appl Pyrolysis 86:66–73

    Article  Google Scholar 

  40. 40.

    Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5:9–12

    CAS  Article  Google Scholar 

  41. 41.

    Kumar RS, Rajkumar P (2014) Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys Technol 67:30–41

    Article  Google Scholar 

  42. 42.

    Bich C, Ambroise J, Péra J (2009) Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 44:194–200

    CAS  Article  Google Scholar 

  43. 43.

    Soucy J, Koubaa A, Migneault S, Riedl B (2016) Chemical composition and surface properties of paper mill sludge and their impact on high density polyethylene (HDPE) composites. J Wood Chem Technol 36:77–93

    CAS  Article  Google Scholar 

  44. 44.

    Bodîrlâu R, Teaca CA, Spiridon I (2007) Thermal investigation upon various composite materials. Rev Roum Chim 52:153–158

    Google Scholar 

  45. 45.

    Yan S, Sagoe-Crentsil K, Shapiro G (2011) Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Environ Manag 92:2085–2090

    CAS  Google Scholar 

  46. 46.

    Pardo SG, Bernal C, Ares A, Abad MJ, Cano J (2010) Rheological, thermal, and mechanical characterization of fly ash-thermoplastic composites with different coupling agents. Polym Compos 31:1722–1730

    CAS  Article  Google Scholar 

  47. 47.

    Lin Y, Chen H, Chan CM, Wu J (2010) The toughening mechanism of polypropylene/calcium carbonate nanocomposites. Polymer 51:3277–3284

    CAS  Article  Google Scholar 

  48. 48.

    Sewda K, Maiti SN (2010) Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical properties. J Appl Polym Sci 118:2264–2275

    CAS  Google Scholar 

  49. 49.

    Araujo JR, Mano B, Teixeira GM, Spinacé MAS, De Paoli MA (2010) Biomicrofibrilar composites of high density polyethylene reinforced with curaua fibers: mechanical, interfacial and morphological properties. Compos Sci Tech 70:1637–1644

    CAS  Article  Google Scholar 

  50. 50.

    Balasuriya PW, Ye L, Mai YW, Wu J (2002) Mechanical properties of wood flake-polyethylene composites. II. Interface modification. J Appl Poly Sci 83:2505–2521

    CAS  Article  Google Scholar 

  51. 51.

    Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Poly Sci 66:1163–1173

    CAS  Article  Google Scholar 

  52. 52.

    Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Tech 66:538–547

    CAS  Article  Google Scholar 

  53. 53.

    Chan CM, Wu J, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43:2981–2992

    CAS  Article  Google Scholar 

  54. 54.

    Gahleitner M, Grein C, Bernreitner K (2012) Synergistic mechanical effects of calcite micro-and nanoparticles and β-nucleation in polypropylene copolymers. Eur Polym J 48:49–59

    CAS  Article  Google Scholar 

  55. 55.

    Migneault S, Koubaa A, Perré P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood–plastic composites. J Wood Chem Technol 34:241–261

    CAS  Article  Google Scholar 

  56. 56.

    Pérez-Fonseca AA, Robledo-Ortíz JR, Ramirez-Arreola DE, Ortega-Gudiño P, Rodrigue D, González-Núñez R (2014) Effect of hybridization on the physical and mechanical properties of high density polyethylene-(pine/agave) composites. Mater Des 64:35–43

    Article  Google Scholar 

  57. 57.

    Fonseca-Valero C, Ochoa-Mendoza A, Arranz-Andrés J, González-Sánchez C (2015) Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites. Comps Part A: Appl Sci Manuf 69:94–104

    CAS  Article  Google Scholar 

  58. 58.

    Ibrahim MM, Dufresne A, El-Zawawy WK, Agblevor FA (2010) Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr Polym 81:811–819

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research, the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors thank the Research Center on Renewable Materials (CRMR) for the structural analysis of composites with FTIR. We also thank William Belhadef for his technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manel Haddar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haddar, M., Elloumi, A., Koubaa, A. et al. Effect of High Content of Deinking Paper Sludge (DPS) on the Reinforcement of HDPE. J Polym Environ 25, 617–627 (2017). https://doi.org/10.1007/s10924-016-0837-9

Download citation

Keywords

  • Deinking paper sludge
  • Maleated polyethylene
  • DPS/HDPE composites
  • Thermal characterization
  • Mechanical properties