Journal of Polymers and the Environment

, Volume 25, Issue 3, pp 617–627 | Cite as

Effect of High Content of Deinking Paper Sludge (DPS) on the Reinforcement of HDPE

  • Manel HaddarEmail author
  • Ahmed Elloumi
  • Ahmed Koubaa
  • Chedly Bradai
  • Sebastien Migneault
  • Foued Elhalouani
Original Paper


Deinking paper sludge (DPS)/high density polyethylene (HDPE) composites with and without coupling agent (3 % of maleated polyethylene (MAPE)) were manufactured by twin-screw extrusion followed by injection molding with high percentages of DPS (0, 20, 30 and 40 %). The effects of DPS content and MAPE on the mechanical, thermal, and morphological properties of the DPS/HDPE composites were investigated. Increasing DPS content in composites increased the tensile and flexural modulus (E; MOE), tensile and flexural strength (Rm; MOR), while decreased elongation at break and Un-notched impact resistance due to a poor adhesion between the DPS and HDPE. The addition of DPS also improved the thermal stability and increased the composites crystallinity. High content of DPS (40 %) and 3 % MAPE achieved good interfacial adhesion between fibres of DPS and HDPE. Therefore, an increase is observed for Rm, MOR, ductility, and impact toughness.


Deinking paper sludge Maleated polyethylene DPS/HDPE composites Thermal characterization Mechanical properties 



This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research, the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors thank the Research Center on Renewable Materials (CRMR) for the structural analysis of composites with FTIR. We also thank William Belhadef for his technical support.


  1. 1.
    European Commission (2008) European Commission, environmental, economic and social impacts of the use of sewage sludge on land. Final report part I: overview reportGoogle Scholar
  2. 2.
    Beauchamp CJ, Charest MH, Gosselin A (2002) Examination of environmental quality of raw and composting de-inking paper sludge. Chemosphere 46:887–895CrossRefGoogle Scholar
  3. 3.
    Chantigny MH, Angers DA, Beauchamp CJ (2000) Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Can J Soil Sci 80:99–105CrossRefGoogle Scholar
  4. 4.
    Phillips VR, Kirkpatrick N, Scotford IM, White RP, Burton RGO (1997) The use of paper-mill sludges on agricultural land. Bioresour Technol 60:73–80CrossRefGoogle Scholar
  5. 5.
    Fernández R, Nebreda B, De la Villa RV, García R, Frías M (2010) Mineralogical and chemical evolution of hydrated phases in the pozzolanic reaction of calcined paper sludge. Cem Concr Compos 32:775–782CrossRefGoogle Scholar
  6. 6.
    Chahidi Elouazzani D (2005) Caractérisation physico-chimique et valorisation en bâtiment et travaux publics des cendres issues de l’incinération des boues de papeterie. PhD Thesis, Institut National des Sciences Appliquées de Lyon (available only in French)Google Scholar
  7. 7.
    Werther J, Ogada T (1999) Sewage sludge combustion. Prog Energy Combust Sci 25:55–116CrossRefGoogle Scholar
  8. 8.
    McAuley B, Kunkel J, Manahan SE (2001) A new process for the drying and gasification of sewage sludge. Water Eng Manag 148:18–20Google Scholar
  9. 9.
    Pakdel H, Roy C (1991) Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy Fuels 5:427–436CrossRefGoogle Scholar
  10. 10.
    Lou R, Wu S, Lv G, Yang Q (2012) Energy and resource utilization of deinking sludge pyrolysis. Appl Energy 90:46–50CrossRefGoogle Scholar
  11. 11.
    Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493CrossRefGoogle Scholar
  12. 12.
    Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137CrossRefGoogle Scholar
  13. 13.
    Ismail H, Rusli A, Rashid AA (2005) Maleated natural rubber as a coupling agent for paper sludge filled natural rubber composites. Polym Test 24:856–862CrossRefGoogle Scholar
  14. 14.
    Qiao X, Zhang Y, Zhang Y (2003) Ink-eliminated paper sludge flour as filler for polypropylene. Polym Polym Compos 11:321–326Google Scholar
  15. 15.
    Son J, Yang HS, Kim HJ (2004) Physico-mechanical properties of paper sludge-thermoplastic polymer composites. J Thermoplast Compos Mater 17:509–522CrossRefGoogle Scholar
  16. 16.
    Ismail H, Salmah Bakar AA (2005) The effect of paper sludge content and size on the properties of polypropylene (PP)-ethylene propylene diene terpolymer (EPDM) composites. J Reinf Plast Compos 24:147–159CrossRefGoogle Scholar
  17. 17.
    Salmah Ismail H, Bakar AA (2006) Effects of chemical modification of paper sludge filled polypropylene (PP)/ethylene propylene diene terpolymer (EPDM) composites. J Reinf Plast Compos 25:43–58CrossRefGoogle Scholar
  18. 18.
    Salmah Ismail H, Bakar AA (2006) Properties of paper sludge filled polypropylene (PP)/ethylene propylene diene terpolymer (EPDM) composites: the effect of silane-based coupling agent. Intern J Polym Mater 55:643–662CrossRefGoogle Scholar
  19. 19.
    Hamzeh Y, Ashori A, Mirzaei B (2011) Effects of waste paper sludge on the physico-mechanical properties of high density polyethylene/wood flour composites. J Polym Environ 19:120–124CrossRefGoogle Scholar
  20. 20.
    Elloumi A, Makhlouf M, Elleuchi A, Bradai Ch (2016) The potential of deinking paper sludge for recycled HDPE reinforcement. J Polym Compos. doi: 10.1002/pc.23975
  21. 21.
    Elloumi A, Makhlouf M, Elleuchi A, Bradai Ch (2016) Deinking sludge (DS), a new bio-filler for HDPE composites. Polym Plast Technol Eng 55:1012–1020CrossRefGoogle Scholar
  22. 22.
    Geng X, Zhang SY, Deng J (2007) Characteristics of paper mill sludge and its utilization for the manufacture of medium density fiberboard. Wood Fiber Sci 39:345–351Google Scholar
  23. 23.
    Migneault S, Koubaa A, Nadji H, Riedl B, Zhang SY, Deng J (2010) Medium-density fiberboard produced using pulp and paper sludge from different pulping processes. Wood Fiber Sci 42:292–303Google Scholar
  24. 24.
    Migneault S, Koubaa A, Nadji H, Riedl B, Zhang SY, Deng J (2011) Binderless fiberboard made from primary and secondary pulp and paper sludge. Wood Fiber Sci 43:180–193Google Scholar
  25. 25.
    Migneault S, Koubaa A, Riedl B, Nadji H, Deng J, Zhang SY (2011) Potential of pulp and paper sludge as a formaldehyde scavenger agent in MDF resins. Holzforschung 65:403–409CrossRefGoogle Scholar
  26. 26.
    Qiao X, Zhang Y, Zhang Y, Zhu Y (2003) Ink-eliminated waste paper sludge flour-filled polypropylene composites with different coupling agent treatments. J Appl Polym Sci 89:513–520CrossRefGoogle Scholar
  27. 27.
    Yuan X, Zhang Y, Zhang X (1999) Maleated polypropylene as a coupling agent for polypropylene-waste newspaper flour composites. J Appl Polym Sci 71:333–337CrossRefGoogle Scholar
  28. 28.
    Hon DNS, Ren S (2003) Interfacial phenomena of newspaper fiber-reinforced polypropylene composite, part I: the development of interfacial interaction. J Reinf Plast Compos 22:957–971CrossRefGoogle Scholar
  29. 29.
    Tserki V, Matzinos P, Kokkou S, Panayiotou C (2005) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A: Appl Sci Manuf 36:965–974CrossRefGoogle Scholar
  30. 30.
    TAPPI T211 om-93 (2000) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. In: TAPPI test methods. TAPPI Press, AtlantaGoogle Scholar
  31. 31.
    Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg 35:298–307CrossRefGoogle Scholar
  32. 32.
    ASTM D 790 (2003) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, p 11Google Scholar
  33. 33.
    ASTM D 638 (2003) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, p 15Google Scholar
  34. 34.
    ASTM D 4812 (1999) Standard test method for unnotched cantilever beam impact resistance of plastics. ASTM International, West Conshohocken, p 11Google Scholar
  35. 35.
    Bouafif H, Koubaa A, Perré P, Cloutier A, Riedl B (2009) Wood particle/high-density polyethylene composites: thermal sensitivity and nucleating ability of wood particles. J Appl Polym Sci 113:593–600CrossRefGoogle Scholar
  36. 36.
    Wunderlich B (1973) Macromolecular physics II. Academic Press, New YorkGoogle Scholar
  37. 37.
    Edalatmanesh M, Sain M, Liss SN (2010) Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques. Water Sci Technol 62:2846–2853CrossRefGoogle Scholar
  38. 38.
    Mishra SP (2010) Bleaching of cellulosic paper fibres with ozone-effect on the fibre properties. PhD Thesis, Institut Polytechnique de Grenoble, FranceGoogle Scholar
  39. 39.
    Méndez A, Fidalgo JM, Guerrero F, Gascó G (2009) Characterization and pyrolysis behaviour of different paper mill waste materials. Anal Appl Pyrolysis 86:66–73CrossRefGoogle Scholar
  40. 40.
    Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5:9–12CrossRefGoogle Scholar
  41. 41.
    Kumar RS, Rajkumar P (2014) Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys Technol 67:30–41CrossRefGoogle Scholar
  42. 42.
    Bich C, Ambroise J, Péra J (2009) Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 44:194–200CrossRefGoogle Scholar
  43. 43.
    Soucy J, Koubaa A, Migneault S, Riedl B (2016) Chemical composition and surface properties of paper mill sludge and their impact on high density polyethylene (HDPE) composites. J Wood Chem Technol 36:77–93CrossRefGoogle Scholar
  44. 44.
    Bodîrlâu R, Teaca CA, Spiridon I (2007) Thermal investigation upon various composite materials. Rev Roum Chim 52:153–158Google Scholar
  45. 45.
    Yan S, Sagoe-Crentsil K, Shapiro G (2011) Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Environ Manag 92:2085–2090Google Scholar
  46. 46.
    Pardo SG, Bernal C, Ares A, Abad MJ, Cano J (2010) Rheological, thermal, and mechanical characterization of fly ash-thermoplastic composites with different coupling agents. Polym Compos 31:1722–1730CrossRefGoogle Scholar
  47. 47.
    Lin Y, Chen H, Chan CM, Wu J (2010) The toughening mechanism of polypropylene/calcium carbonate nanocomposites. Polymer 51:3277–3284CrossRefGoogle Scholar
  48. 48.
    Sewda K, Maiti SN (2010) Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical properties. J Appl Polym Sci 118:2264–2275Google Scholar
  49. 49.
    Araujo JR, Mano B, Teixeira GM, Spinacé MAS, De Paoli MA (2010) Biomicrofibrilar composites of high density polyethylene reinforced with curaua fibers: mechanical, interfacial and morphological properties. Compos Sci Tech 70:1637–1644CrossRefGoogle Scholar
  50. 50.
    Balasuriya PW, Ye L, Mai YW, Wu J (2002) Mechanical properties of wood flake-polyethylene composites. II. Interface modification. J Appl Poly Sci 83:2505–2521CrossRefGoogle Scholar
  51. 51.
    Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Poly Sci 66:1163–1173CrossRefGoogle Scholar
  52. 52.
    Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Tech 66:538–547CrossRefGoogle Scholar
  53. 53.
    Chan CM, Wu J, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43:2981–2992CrossRefGoogle Scholar
  54. 54.
    Gahleitner M, Grein C, Bernreitner K (2012) Synergistic mechanical effects of calcite micro-and nanoparticles and β-nucleation in polypropylene copolymers. Eur Polym J 48:49–59CrossRefGoogle Scholar
  55. 55.
    Migneault S, Koubaa A, Perré P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood–plastic composites. J Wood Chem Technol 34:241–261CrossRefGoogle Scholar
  56. 56.
    Pérez-Fonseca AA, Robledo-Ortíz JR, Ramirez-Arreola DE, Ortega-Gudiño P, Rodrigue D, González-Núñez R (2014) Effect of hybridization on the physical and mechanical properties of high density polyethylene-(pine/agave) composites. Mater Des 64:35–43CrossRefGoogle Scholar
  57. 57.
    Fonseca-Valero C, Ochoa-Mendoza A, Arranz-Andrés J, González-Sánchez C (2015) Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites. Comps Part A: Appl Sci Manuf 69:94–104CrossRefGoogle Scholar
  58. 58.
    Ibrahim MM, Dufresne A, El-Zawawy WK, Agblevor FA (2010) Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr Polym 81:811–819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manel Haddar
    • 1
    Email author
  • Ahmed Elloumi
    • 1
  • Ahmed Koubaa
    • 2
  • Chedly Bradai
    • 1
  • Sebastien Migneault
    • 2
  • Foued Elhalouani
    • 1
  1. 1.Laboratoire des Systèmes Electro-Mécaniques (LASEM), Unité Physique et Mécaniques des Matériaux (UPMM)Ecole Nationale d’Ingénieurs de Sfax (ENIS)SfaxTunisie
  2. 2.Laboratoire de biomatériauxUniversité du Québec en Abitibi-Témiscamingue (UQAT)Rouyn-NorandaCanada

Personalised recommendations