Skip to main content
Log in

Molecular Transport of Xylene Through Palm Pressed Fibre Filled Low Density Polyethylene: Role of Fibre Content, Alkali Treatment and Particle Size

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

We report in this paper the transport of an aromatic solvent, xylene through palm pressed fibre filled low density polyethylene composites studied at three different temperatures (40, 60, and 80 °C) by conventional weight-gain method. The diffusion parameters were investigated with special reference to the effect of fibre content, temperature and particle size. The effect of alkali treatment on solvent uptake was also analyzed. The transport coefficients of diffusion, permeation and sorption were determined to evaluate the influence of interface bonding on transport properties. The van’t Hoff relationship was used to determine the thermodynamic parameters and was found that the estimated free energies of sorption were all positive, indicating non-spontaneity of the solubility of PPF/LDPE composites. The first order kinetic rate constant and swelling parameters were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. John MJ, Francis B, Varughese K, Thomas S (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A Appl Sci Manuf 39(2):352–363

    Article  Google Scholar 

  2. Bessadok A, Langevin D, Gouanvé F, Chappey C, Roudesli S, Marais S (2009) Study of water sorption on modified Agave fibres. Carbohydr Polym 76(1):74–85

    Article  CAS  Google Scholar 

  3. Mathew AP, Packirisamy S, Padmanabhan A, Thomas S (1997) Kinetics of diffusion of styrene monomer containing divinyl benzene through vulcanized natural rubber. J Polym Eng 17(5):405–429

    Article  CAS  Google Scholar 

  4. Bernardo G, Vesely D (2010) Anomalous swelling of a polystyrene matrix in organic solvents. J Appl Polym Sci 115(4):2402–2408

    Article  CAS  Google Scholar 

  5. Haghighat M, Khorasani SN, Zadhoush A (2007) Filler–rubber interactions in α_cellulose-filled styrene butadiene rubber composites. Polym Compos 28(6):748–754

    Article  CAS  Google Scholar 

  6. Francucci G, Rodríguez ES, Vázquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Composites Part A Appl Sci Manuf 41(1):16–21

    Article  Google Scholar 

  7. Harogoppad S, Aminabhavi T (1991) Diffusion and sorption of organic liquids through polymer membranes. II. Neoprene, SBR, EPDM, NBR, and natural rubber versus n-alkanes. J Appl Polym Sci 42(8):2329–2336

    Article  CAS  Google Scholar 

  8. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187

    Article  CAS  Google Scholar 

  9. Igwe IO (2007) Uptake of aromatic solvents by polyethylene films. J Appl Polym Sci 104(6):3849–3854

    Article  CAS  Google Scholar 

  10. Aminabhavi TM, Aithal US, Shukla SS (1989) Molecular transport of organic liquids through polymer films. J Macromol Sci—Rev Macromol Chem Phys 29(2–3):319–363

    Article  Google Scholar 

  11. Sada E, Kumazawa H, Xu P, Wang ST (1990) Permeation of mixed gases in glassy polymer membranes. J Appl Polym Sci 40(7–8):1391–1399

    Article  CAS  Google Scholar 

  12. Unnikrishnan G, Thomas S (1998) Interaction of crosslinked natural rubber with chlorinated hydrocarbons. Polym 39(17):3933–3938

    Article  CAS  Google Scholar 

  13. Smith MJ, Peppas NA (1985) Effect of the degree of crosslinking on penetrant transport in polystyrene. Polymer 26(4):569–574

    Article  CAS  Google Scholar 

  14. Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7(3):861–871

    Article  CAS  Google Scholar 

  15. Barrer R, Barrie J, Rogers M (1963) Heterogeneous membranes: diffusion in filled rubber. J Polym Sci Part A Gen Pap 1(8):2565–2586

    Article  Google Scholar 

  16. De Candia F, Gargani L, Renzulli A (1990) Transport properties of filled elastomeric networks. J Appl Polym Sci 41(5–6):955–964

    Article  Google Scholar 

  17. Lawandy S, Botros S (1991) The effect of type and amount of carbon black on the interaction between polychloroprene rubber and motor oil. J Appl Polym Sci 42(1):137–141

    Article  CAS  Google Scholar 

  18. Hong SU, Duda J (1997) Penetrant transport in polyethylene-polystyrene semi-interpenetrating polymer networks. J Appl Polym Sci 65(1):51–57

    Article  CAS  Google Scholar 

  19. Lawandy S, Helaly F (1986) Diffusion of a volatile liquid in polychloroprene rubber. J Appl Polym Sci 32(6):5279–5286

    Article  CAS  Google Scholar 

  20. Harogoppad SB, Aminabhavi TM, Balundgi RH (1991) Sorption and transport of aqueous salt solution in polyurethane membrane at 25, 44, and 60°C. J Appl Polym Sci 42(5):1297–1306

    Article  CAS  Google Scholar 

  21. Poh BT, Adachi K, Kotaka T (1987) Solution-crosslinked networks. 1. Swelling and absorption behavior of natural rubber networks. Macromol 20(10):2563–2569

    Article  CAS  Google Scholar 

  22. Boonstra B, Dannenberg E (1958) The equilibrium swelling data of filled natural rubber. Rubber Age 1:825–838

    Google Scholar 

  23. Ahmad A, Mohd DH, Abdullah I (2004) Mechanical properties of filled NR/LLDPE blends. Iran Polym J 13:173–178

    CAS  Google Scholar 

  24. Obasi HC, Ogbobe O, Igwe IO (2009) Diffusion characteristics of toluene into natural rubber/linear low density polyethylene blends. Int J Polym Sci 2009:1–6

    Article  Google Scholar 

  25. Mathew TV, Kuriakose S (2007) Molecular transport of aromatic hydrocarbons through lignin-filled natural rubber composites. Polym Compos 28(1):15–22

    Article  CAS  Google Scholar 

  26. Sareena C, Ramesan MT, Purushothaman E (2012) Transport studies of peanut shell powder reinforced natural rubber composites in aromatic solvents. Polym Compos 33(10):1678–1692

    Article  CAS  Google Scholar 

  27. Subramaniam V, Menon NR, Sin H, May CY (2013) The development of a residual oil recovery system to increase the revenue of a palm oil mill. J Oil Palm Res 25(1):116–122

    Google Scholar 

  28. Desai AB, Wilkes GL (1974) Solvent-induced crystallization of polyethylene terephthalate. J Polym Sci Polym Symps 46(1):291–319

    Article  CAS  Google Scholar 

  29. Johnson T, Thomas S (2000) Effect of epoxidation on the transport behaviour and mechanical properties of natural rubber. Polymer 41(20):7511–7522

    Article  CAS  Google Scholar 

  30. Ismail H, Suzaimah S (2000) Styrene butadiene rubber/epoxidized natural rubber blends: dynamic properties, curing characteristics and swelling studies. Polym Test 19(8):879–888

    Article  CAS  Google Scholar 

  31. Joseph S, Joseph Shaji, Thomas Sabu, Joseph Kuruvilla, Cvelbar Uros, Panja Peter, Ceh Miran (2012) Molecular transport of aromatic solvents through oil palm micro fiber filled natural rubber composites: role of fiber content and interface adhesion on transport. J Adhes Sci Technol 26(1–3):271–288

    CAS  Google Scholar 

  32. George SC, Thomas S, Ninan K (1996) Molecular transport of aromatic hydrocarbons through crosslinked styrene-butadiene rubber membranes. Polymer 37(26):5839–5848

    Article  CAS  Google Scholar 

  33. Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:54

    Article  Google Scholar 

  34. Igwe IO, Ezeani OE (2012) Studies on the transport of aromatic solvents through filled natural rubber. Int J Polym Sci 2012:1–11

    Article  Google Scholar 

  35. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  36. Donatelli A, Sperling L, Thomas D (1976) Interpenetrating polymer networks based on SBR/PS. 2. Influence of synthetic detail and morphology on mechanical behavior. Macromol 9(4):676–680

    Article  CAS  Google Scholar 

  37. Harrogoppad S, Aminabhavi T (1991) Thermal ageing, degradation, and swelling of acrylate rubber, floro rubber and their blends containing poly functional acrelate. Macromol 24:2595

    Article  Google Scholar 

  38. Aithal U, Aminabhavi T, Cassidy P (1989) Barrier polymer and structures. In: 197th National ACS Meeting, Dallas, Tx. American Chemical Society, Washington DC, p 1989

  39. Unnikrishnan G, Thomas S, Varghese S (1996) Sorption and diffusion of aromatic hydrocarbons through filled natural rubber. Polymer 37(13):2687–2693

    Article  CAS  Google Scholar 

  40. Wang J, Wu W, Lin Z (2008) Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. J Appl Polym Sci 109(5):3018–3023

    Article  CAS  Google Scholar 

  41. Bajpai A, Bajpai J, Shukla S (2002) Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. React Funct Polym 50(1):9–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henry Obasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obasi, C.H., Obidiegwu, U.M., Onyeagoro, N.G. et al. Molecular Transport of Xylene Through Palm Pressed Fibre Filled Low Density Polyethylene: Role of Fibre Content, Alkali Treatment and Particle Size. J Polym Environ 25, 544–555 (2017). https://doi.org/10.1007/s10924-016-0835-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0835-y

Keywords

Navigation