Journal of Polymers and the Environment

, Volume 25, Issue 2, pp 296–307 | Cite as

In Vivo and In Vitro Degradation Studies for Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Biopolymer

  • Abdulrahman A. Kehail
  • Vijay Boominathan
  • Karoly Fodor
  • Vijaya Chalivendra
  • Tracie Ferreira
  • Christopher J. BrighamEmail author
Original Paper


Studies have shown that the copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] possesses favorable mechanical properties for use in medical supplies and products (e.g., sutures, scaffolds, bone plates). One of the major under-addressed issues associated with the use of biodegradable, bio-based PHA polymers in resorbable medical products is the correlation between the mechanical properties and the in vivo material degradation over time. In this study, P(HB-co-17 mol% HHx) matrices were mechanically tested after either incubation in cultures of human embryonic kidney cells (HEK) for in vitro degradation studies for up to 4 weeks, or inserted into Danio rerio (zebrafish) tissues for in vivo degradation studies for up to 7 weeks. The mechanical properties and scanning electron microscopy (SEM) images of the degraded materials were examined and later correlated to understand the degradation phenomenon. Our results show that Young’s modulus of P(HB-co-17 mol%HHx) during in vitro studies decreased from 3.26 to 2.42 GPa within 4 weeks, and in vivo breakdown resulted in a significant decrease in Young’s modulus with a decrease from 3.26 to 0.51 GPa and a mass loss of 59 % within 7 weeks. SEM images showed the development of pores and cracks on the surface of the material over time. Plasticization and recrystallization were observed and likely play a role in the alteration of mechanical properties.


P(HB-co-HHx) Biodegradation In vivo and in vitro incubation Lipase Microindentation 



This work was funded by the Office of the Provost at University of Massachusetts Dartmouth. The authors would like to thank Dr. Sebastian Riedel for helpful protocols and material, and Mr. Jacob Palmer for helpful edits of the manuscript.

Supplementary material

10924_2016_808_MOESM1_ESM.docx (539 kb)
Supplementary material 1 (DOCX 538 kb)


  1. 1.
    Sudesh K, Abe H, Doi Y (2000) Synthesis, structure, and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6 CrossRefGoogle Scholar
  2. 2.
    Brigham CJ, Kurosawa K, Rha C, Sinskey AJ (2011) Bacterial carbon storage to value added products. J Microb Biochem Technol 83:S3-002. doi: 10.4172/1948-5948.S3-002 Google Scholar
  3. 3.
    Wang Y, Bian Y, Wu Q, Chen G (2008) Evaluation of three dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868. doi: 10.1016/j.biomaterials.2008.03.021 CrossRefGoogle Scholar
  4. 4.
    Steinbuchel A (1991) In: Byrom D (ed) Polyhydroxyalkanoic acids. MacMillan Publisher, Basingstoke, pp 123–213Google Scholar
  5. 5.
    Holmes PA (1985) Applications of PHB—a microbially produced biodegradable thermoplastic. Phys Technol 16:32–36. doi: 10.1088/0305-4624/16/1/305 CrossRefGoogle Scholar
  6. 6.
    Wong YM, Brigham CJ, Rha C, Sinskey AJ, Sudesh K (2012) Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol 121:320–327. doi: 10.1016/j.biortech.2012.07.015 CrossRefGoogle Scholar
  7. 7.
    Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77:2847–2854. doi: 10.1128/AEM.02429-10 CrossRefGoogle Scholar
  8. 8.
    Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof AM, Rha C (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109:74–83. doi: 10.1002/bit.23283 CrossRefGoogle Scholar
  9. 9.
    Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N (2011) Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl Microbiol Biotechnol 89:1373–1386. doi: 10.1007/s00253-011-3098-5 CrossRefGoogle Scholar
  10. 10.
    Kehail A, Foshey M, Chalivendra V, Brigham CJ (2015) Thermal and mechanical characterization of solvent-cast poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Polym Res 22:216. doi: 10.1007/s10965-015-0872-6 CrossRefGoogle Scholar
  11. 11.
    Qu X, Wu Q, Zhang K, Chena GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27:3540–3548. doi: 10.1016/j.biomaterials.2006.02.015 Google Scholar
  12. 12.
    Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105. doi: 10.1016/S1369-703X(03)00040-8 CrossRefGoogle Scholar
  13. 13.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346. doi: 10.1016/S0142-9612(00)00101-0 CrossRefGoogle Scholar
  14. 14.
    Mukai K, Doi Y, Sema Y, Tomita K (1993) Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett 15:601–604. doi: 10.1007/BF00138548 CrossRefGoogle Scholar
  15. 15.
    Doi Y, Kumagai Y, Tanahashi N, Mukai K (1992) In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable polymers and plastics, structural effects on biodegradation of microbial and synthetic poly(hydroxyalkanoate). The Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Scott G (1999) Polymers and the environment. The Royal Society of Chemistry, CambridgeGoogle Scholar
  17. 17.
    Ying TH, Ishii D, Mahara A (2008) Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 29:1307–1317. doi: 10.1016/j.biomaterials.2007.11.031 CrossRefGoogle Scholar
  18. 18.
    Doyle C, Tanner ET, Bonfield W (1991) In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12:841–847. doi: 10.1016/0142-9612(91)90072-I CrossRefGoogle Scholar
  19. 19.
    Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774. doi: 10.1038/343771a0 CrossRefGoogle Scholar
  20. 20.
    Navia-Paldanius D, Savinainen J, Laitinen J (2012) Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J Lipid Res 53:2413–2424. doi: 10.1194/jlr.M030411 CrossRefGoogle Scholar
  21. 21.
    Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U (2012) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110:461–470. doi: 10.1002/bit.24713 CrossRefGoogle Scholar
  22. 22.
    Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 65:1977–1982Google Scholar
  23. 23.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20CrossRefGoogle Scholar
  24. 24.
    Harrison ST, Chase HA, Amor SR, Bonthrone KM, Sanders JK (1992) Plasticization of poly(hydroxybutyrate) in vivo. Macromolecules 14:50–56CrossRefGoogle Scholar
  25. 25.
    Ceccorulli G, Pizzoli M, Scandola M (1992) Plasticization of bacterial poly(3-hydroxybutyrate). Macromolecules 25:3304–3306CrossRefGoogle Scholar
  26. 26.
    Valappil SP, Misra SK, Boccaccini A, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868. doi: 10.1586/17434440.3.6.853 CrossRefGoogle Scholar
  27. 27.
    Barnard GN, Sanders JM (1989) The poly-β-hydroxybutyrate granule in vivo. J Biol Chem 264:3286–3291Google Scholar
  28. 28.
    Daniels AU, Chang M, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78CrossRefGoogle Scholar
  29. 29.
    Tormala P, Vainionpaa S, Kilpikari J, Rokkanen P (1987) The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro. Biomaterials 8:42–45CrossRefGoogle Scholar
  30. 30.
    Tunc DC, Rohovsky MW, Jadhav B, Lehman WB, Strongwater A, Kummer F (1985) Evaluation of body absorbable bone fixation devices. Polym Mater Sci Eng 53:502–504Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Abdulrahman A. Kehail
    • 1
  • Vijay Boominathan
    • 1
  • Karoly Fodor
    • 2
  • Vijaya Chalivendra
    • 2
  • Tracie Ferreira
    • 1
  • Christopher J. Brigham
    • 1
    Email author
  1. 1.Department of BioengineeringUniversity of Massachusetts DartmouthNorth DartmouthUSA
  2. 2.Department of Mechanical EngineeringUniversity of Massachusetts DartmouthNorth DartmouthUSA

Personalised recommendations