Skip to main content

Advertisement

Log in

Kinetic Analysis of the Temperature Effect on Polyhydroxyalkanoate Production by Haloferax mediterranei in Synthetic Molasses Wastewater

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Haloferax mediterranei is an extremely halophilic archaeon that is able to synthesize polyhydroxyalkanoate (PHA) in high salt environment with low sterility demand. In this study, a mathematical model was validated and calibrated for describing the kinetic behavior of H. mediterranei at 15, 20, 25, and 35 °C in synthetic molasses wastewater. Results showed that the production of PHA by H. mediterranei, ranging from 390 to 620 mg h−1 L−1, was strongly dependent on the temperature. The specific growth rate (µ max), specific substrate utilization rate (q max), and specific decay rate (k d) of H. mediterranei increased with temperature following Arrhenius equation prediction. The estimated activation energy was 58.31, 25.59, and 22.38 kJ mol−1 for the process of cell growth, substrate utilization, and cell decay of H. mediterranei, respectively. The high temperature triggered the increased PHA storage even without nitrogen limitation. Thus, working at high temperatures seems a good strategy for improving the PHA productivity of H. mediterranei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

k d :

Biomass specific decay rate (h−1)

K S :

Half-saturation coefficient of carbon source (mg COD L−1)

K N :

Half-saturation coefficient of nitrogen source (mg N L−1)

q S :

Biomass specific substrate utilization rate (h−1)

q PHA :

Biomass specific PHA production rate (h−1)

q max :

Maximum biomass specific substrate utilization rate, h−1

S S :

Substrate concentration (mg COD L−1)

S N :

Ammonium nitrogen concentration (mg N L−1)

XB :

Biomass concentration (mg COD L−1)

XPHA :

PHA concentration (mg COD L−1)

XPHB :

PHB concentration (mg COD L−1)

XPHV :

PHV concentration (mg COD L−1)

Y∆PHA/∆S :

PHA yield (mg COD mg−1 COD)Y∆X/∆S Growth yield based on COD consumption (mg COD mg-1 COD)

Y∆X/∆N :

Growth yield based on nitrogen consumption (mg COD mg−1 N)

µ max :

Maximum biomass specific growth rate (h−1)

µ :

Biomass specific growth rate (h−1)

References

  1. Macrae MR, Wilkinson FJ (1958) Poly-β-hyroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Microbiol 19:210–222

    Article  CAS  Google Scholar 

  2. Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279

    Article  CAS  Google Scholar 

  3. Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay KU, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and reuse of medium salts. Extremophiles 18:463–470

    Article  CAS  Google Scholar 

  4. Lee YS (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  5. Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia-coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    CAS  Google Scholar 

  6. Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  Google Scholar 

  7. Lee YS (1998) Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioprocess Eng 18:397–399

    Article  Google Scholar 

  8. Povolo S, Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp 179:1–9

    Article  Google Scholar 

  9. Ashby DR, Solaiman YDK, Foglia AT (2004) Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  10. Silva LF, Taciro MK, Ramos MEM, Carter JM, Pradella JGC, Gomez JGC (2004) Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31:245–254

    Article  CAS  Google Scholar 

  11. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  Google Scholar 

  12. Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M (2012) Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ 14:495–503

    Article  CAS  Google Scholar 

  13. Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecien M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M (2013) Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps citronellolis. React Funct Polym 73:1391–1398

    Article  CAS  Google Scholar 

  14. Oliveira RC, Gomez JGC, Torres BB, Netto CLB, Da Silva LF (2000) A suitable procedure to choose antimicrobials as controlling agents in fermentations performed by bacteria. Braz J Microbiol 31:87–89

    CAS  Google Scholar 

  15. Koller M, Hesse P, Salerno A, Reiterer A, Braunegg G (2011) A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey. Biomass Bioenergy 35:748–753

    Article  CAS  Google Scholar 

  16. Lillo JG, Rodriguez-Valera F (1990) Effects of culture conditions on poly(beta-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    Google Scholar 

  17. Rodriguezvalera F, Juez G, Kushner DJ (1983) Halobacterium-mediterranei Spec-Nov, a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369–381

    Article  CAS  Google Scholar 

  18. Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) Co- and terpolyesters from biodiesel industry-derived by-products. Archaea 70:1236–1242

    Google Scholar 

  19. Koller M, Atlic A, Gonzalez-Garcia Y, Kutschera C, Braunegg G (2008) Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 272:87–92

    Article  CAS  Google Scholar 

  20. Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 41:2289–2296

    Article  CAS  Google Scholar 

  21. Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  CAS  Google Scholar 

  22. Koller M, Salerno A, Reiterer A, Malli H, Malli K, Kettl K, Narodoslawsky M, Schnitzer H, Chiellini E, Braunegg G (2012) In: Sugar cane as feedstock for biomediated polymer production. Nova Science Pub Inc, Hauppauge

    Google Scholar 

  23. Bhattacharyya A, Pramanik A, Maji S, Haldar S, Mukhopadhyay U, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2:34–36

    Article  Google Scholar 

  24. Bhattacharyya Anirban, Jana Kuntal, Haldar Saubhik, Bhowmic Asit, Mukhopadhyay Ujjal Kumar, De Sudipta, Mukherjee Joydeep (2015) Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World J Microbiol Biotechnol 31:717–727

    Article  CAS  Google Scholar 

  25. Johnson K, van Geest J, Kleerebezem R, van Loosdrecht MCM (2010) Short- and long-term temperature effects on aerobic polyhydroxybutyrate producing mixed cultures. Water Res 44:1689–1700

    Article  CAS  Google Scholar 

  26. Chinwetkitvanich S, Randall CW, Panswad T (2009) Simultaneous COD Removal and PHA production in an activated sludge system under different temperatures. Eng J 13:256–262

    Article  Google Scholar 

  27. Eddy Metcalf (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  28. Eckenfelder W, Wesley J (2000) Industrial water pollution control, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  29. Krzywonos M, Lapawa A (2012) Decolourisation of sugar beet molasses vinasse by ion exchange. Clean Soil Air Water 40:1408–1414

    Article  CAS  Google Scholar 

  30. Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan ZG, Keller E (2005) Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J Chromatogr A 1070:131–136

    Article  CAS  Google Scholar 

  31. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  32. Cui YW, Ding JR, Ji SY, Peng YZ (2014) Start-up of halophilic nitrogen removal via nitrite from hypersaline wastewater by estuarine sediments in sequencing batch reactor. Int J Environ Sci Technol 11:281–292

    Article  CAS  Google Scholar 

  33. Rittmann BE, Mccarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, Boston

    Google Scholar 

  34. Dionisi D, Beccari M, Di Gregorio S, Majone M, Papini MP, Vallini G (2005) Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. J Chem Technol Biotechnol 80:1306–1318

    Article  CAS  Google Scholar 

  35. Johnson K, Kleerebezem R, van Loosdrecht MCM (2009) Model-based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fed-batch reactors. Biotechnol Bioeng 104:50–67

    Article  CAS  Google Scholar 

  36. Grady CPL, Daigger GT, Lim HC (1999) Biological wastewater treatment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  37. Ng H (1969) Effect of decreasing growth temperature on cell yield of Escherichia coli. J Bacteriol 98:232–237

    CAS  Google Scholar 

  38. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  39. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly (beta-hydroxybutyrate) by Halobacteria. Appl Environ Microbiol 51:214–216

    CAS  Google Scholar 

  40. Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10:135–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Project Nos. 51478011 and 51178004), the Beijing Natural Science Foundation of Beijing (No. 8132013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Wei Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Arrhenius plot of µ 0 (filled black square) and q s0 (filled black triangle). (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, YW., Zhang, HY., Ji, SY. et al. Kinetic Analysis of the Temperature Effect on Polyhydroxyalkanoate Production by Haloferax mediterranei in Synthetic Molasses Wastewater. J Polym Environ 25, 277–285 (2017). https://doi.org/10.1007/s10924-016-0807-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0807-2

Keywords

Navigation