Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting

Abstract

This paper presents a life cycle assessment (LCA) comparing three forms of poly(lactic acid) (PLA) disposal: mechanical recycling, chemical recycling and composting. The LCA data was taken from lab scale experiments for composting and hydrolysis steps. Polymerization data in chemical recycling was obtained from computer simulation. Mechanical recycling data from lab scale were combined with the data from a plastics commercial mechanical recycling plant. The analysis considered two different product systems based on the input of the recycled PLA in the product system. Considering the categories: climate change, human toxicity and fossil depletion, the LCA showed that mechanical recycling presented the lowest environmental impact, followed by chemical recycling and composting. Among the forms of recycling, the most important input was the electricity consumption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid)—synthesis, structures, properties, processing, and applications. Wiley, New Jersey

    Google Scholar 

  2. 2.

    Vink ETH, Rábago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) Macromol Biosci 4:551

    CAS  Article  Google Scholar 

  3. 3.

    Vink ETH, Glassner DA, Kolstad JJ, Wooley RJ, O’Connor RP (2007) Ind Biotechnol 3:58

    CAS  Article  Google Scholar 

  4. 4.

    Vink ETH, Davies S, Kolstad JJ (2010) Ind Biotechnol 6:212

    CAS  Article  Google Scholar 

  5. 5.

    Vink ETH, Davies S (2015) Ind Biotechnol 11:167

    CAS  Article  Google Scholar 

  6. 6.

    Groot WJ, Borén T (2010) Int J Life Cycle Assess 15:970

    CAS  Article  Google Scholar 

  7. 7.

    Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) J Clean Prod 23:47

    Article  Google Scholar 

  8. 8.

    Souza PMS, Corroque NA, Morales AR, Marin-Morales MA, Mei LHI (2013) J Polym Environ 21:1052

    CAS  Article  Google Scholar 

  9. 9.

    Hermann BG, Debeer L, De Wilde B, Blok K, Patel MK (2011) Polym Degrad Stabil 96:1159

    CAS  Article  Google Scholar 

  10. 10.

    Detzel A, Krüger M (2006) Life cycle assessment of PLA: a comparison of food packaging made from NatureWorks® PLA and alternative materials. IFEU Heidelberg, Heidelberg

    Google Scholar 

  11. 11.

    Papong S, Malakul P, Trungkavashirakun R, Wenunun P, Chom-in T, Nithitanakul M, Sarobol E (2014) J Clean Prod 65:539

    CAS  Article  Google Scholar 

  12. 12.

    Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) J Clean Prod 86:132

    Article  Google Scholar 

  13. 13.

    Piemonte V, Sabatini S, Gironi F (2013) J Polym Environ 21:640

    CAS  Article  Google Scholar 

  14. 14.

    Zenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczy’nska M, Karasiewicz T (2009) Polym Test 28:412

    CAS  Article  Google Scholar 

  15. 15.

    Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Polym Degrad Stabil 93:321

    CAS  Article  Google Scholar 

  16. 16.

    Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stabil 95:116

    CAS  Article  Google Scholar 

  17. 17.

    Cosate de Andrade MF (2015) Estudo da avaliação de ciclo de vida do PLA: comparação entre a reciclagem química, mecânica e compostagem. Masters dissertation. UNICAMP, Campinas

  18. 18.

    International Organization for Standardization (2006) ISO 14040. Environmental management. Life cycle assessment. Principles and framework

  19. 19.

    International Organization for Standardization (2006) ISO 14044. Environmental management. Life cycle assessment. Requirements and guidelines

  20. 20.

    Mallet B, Lamnawar K, Maazouz A (2014) Polym Eng Sci 54:840

    CAS  Article  Google Scholar 

  21. 21.

    Jaszkiewicz A, Bledzki AK, van der Meer R, Franciszczak P, Meljon A (2014) Polym Bull 71:1675

    CAS  Article  Google Scholar 

  22. 22.

    Meng Q-K, Heuzey M-C, Carreau PJ (2012) Int Polym Proc 27:505

    CAS  Article  Google Scholar 

  23. 23.

    Garraín D, Vidal R, Franco V, Martínez P (2008) Residuos 104:58

    Google Scholar 

  24. 24.

    Perugini F, Mastellone ML, Arena U (2005) Environ Prog 24:137

    CAS  Article  Google Scholar 

  25. 25.

    Martínez GAR (2011) Modelagem e simulação do processo de produção de PLA (poli-ácido láctico) obtido a partir de fontes renováveis para uso biomédico. Masters dissertation. UNICAMP, Campinas

  26. 26.

    Piemonte V, Gironi F (2013) J Polym Environ 21:313

    CAS  Article  Google Scholar 

  27. 27.

    Kumar Suri A, Banerjee S (2006) Tin Mater Sci Technol. doi:10.1002/9783527603978.mst0079

  28. 28.

    Asthana N, Kolah A, Vu DT, Lira CT, Miller DJA (2005) Org Process Res Dev 9:599

    CAS  Article  Google Scholar 

  29. 29.

    Vu DT, Kolah AK, Asthana NS, Peereboom L, Lira CT, Miller DJ (2005) Fluid Phase Equilib 236:125

    CAS  Article  Google Scholar 

  30. 30.

    Krause MJ, Townsend TG (2016) Environ Sci Technol Lett 3:166

    CAS  Article  Google Scholar 

  31. 31.

    Gentil E, Christensen TH, Aoustin E (2009) Waste Manag Res 27:696

    CAS  Article  Google Scholar 

  32. 32.

    International Organization for Standardization (2007) ISO 14855-2. Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—method by analysis of evolved carbon dioxide-Part 2: gravimetric measurement of carbon dioxide evolved in a laboratory-scale test

  33. 33.

    Souza PMS, Morales AR, Mei LHI (2014) Polímeros 24:110

    CAS  Article  Google Scholar 

  34. 34.

    Ministério do Meio Ambiente (2010) Manual para implantação de compostagem e de coleta seletiva no âmbito de consórcios públicos

  35. 35.

    Razza F, Innocenti FD (2012) Asia-Pac J Chem Eng 7:S301

    CAS  Article  Google Scholar 

  36. 36.

    Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2008) A life cycle impact assessment method which comprises harmonised category indicator at the midpoint and the endpoint level. First edition report 1: characterisation

  37. 37.

    Frischknecht R, Jungbluth N et al (2003) Implementation of life cycle impact assessment methods: final Report Ecoinvent 2000. Swiss Centre for LCI, Duebendorf

    Google Scholar 

  38. 38.

    Ministério de Minas e Energia (MME) (2015) Resenha Energética Brasileira. Ministério de Minas e Energia

  39. 39.

    Siqueira JE, Henkes JA (2014) R Gest Sust Ambient 3:359

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP (Process Number 2014/09883-5) and CAPES by the financial support and to the company Wisewood Soluções Ecológicas S.A. (Brazil) for the recycling process data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marina F. Cosate de Andrade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cosate de Andrade, M.F., Souza, P.M.S., Cavalett, O. et al. Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. J Polym Environ 24, 372–384 (2016). https://doi.org/10.1007/s10924-016-0787-2

Download citation

Keywords

  • Life cycle assessment
  • Poly(lactic acid)
  • End-of-life
  • Recycling