Journal of Polymers and the Environment

, Volume 24, Issue 4, pp 372–384 | Cite as

Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting

  • Marina F. Cosate de AndradeEmail author
  • Patrícia M. S. Souza
  • Otávio Cavalett
  • Ana R. Morales
Original Paper


This paper presents a life cycle assessment (LCA) comparing three forms of poly(lactic acid) (PLA) disposal: mechanical recycling, chemical recycling and composting. The LCA data was taken from lab scale experiments for composting and hydrolysis steps. Polymerization data in chemical recycling was obtained from computer simulation. Mechanical recycling data from lab scale were combined with the data from a plastics commercial mechanical recycling plant. The analysis considered two different product systems based on the input of the recycled PLA in the product system. Considering the categories: climate change, human toxicity and fossil depletion, the LCA showed that mechanical recycling presented the lowest environmental impact, followed by chemical recycling and composting. Among the forms of recycling, the most important input was the electricity consumption.


Life cycle assessment Poly(lactic acid) End-of-life Recycling 



The authors are grateful to FAPESP (Process Number 2014/09883-5) and CAPES by the financial support and to the company Wisewood Soluções Ecológicas S.A. (Brazil) for the recycling process data.


  1. 1.
    Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid)—synthesis, structures, properties, processing, and applications. Wiley, New JerseyCrossRefGoogle Scholar
  2. 2.
    Vink ETH, Rábago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) Macromol Biosci 4:551CrossRefGoogle Scholar
  3. 3.
    Vink ETH, Glassner DA, Kolstad JJ, Wooley RJ, O’Connor RP (2007) Ind Biotechnol 3:58CrossRefGoogle Scholar
  4. 4.
    Vink ETH, Davies S, Kolstad JJ (2010) Ind Biotechnol 6:212CrossRefGoogle Scholar
  5. 5.
    Vink ETH, Davies S (2015) Ind Biotechnol 11:167CrossRefGoogle Scholar
  6. 6.
    Groot WJ, Borén T (2010) Int J Life Cycle Assess 15:970CrossRefGoogle Scholar
  7. 7.
    Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) J Clean Prod 23:47CrossRefGoogle Scholar
  8. 8.
    Souza PMS, Corroque NA, Morales AR, Marin-Morales MA, Mei LHI (2013) J Polym Environ 21:1052CrossRefGoogle Scholar
  9. 9.
    Hermann BG, Debeer L, De Wilde B, Blok K, Patel MK (2011) Polym Degrad Stabil 96:1159CrossRefGoogle Scholar
  10. 10.
    Detzel A, Krüger M (2006) Life cycle assessment of PLA: a comparison of food packaging made from NatureWorks® PLA and alternative materials. IFEU Heidelberg, HeidelbergGoogle Scholar
  11. 11.
    Papong S, Malakul P, Trungkavashirakun R, Wenunun P, Chom-in T, Nithitanakul M, Sarobol E (2014) J Clean Prod 65:539CrossRefGoogle Scholar
  12. 12.
    Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) J Clean Prod 86:132CrossRefGoogle Scholar
  13. 13.
    Piemonte V, Sabatini S, Gironi F (2013) J Polym Environ 21:640CrossRefGoogle Scholar
  14. 14.
    Zenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczy’nska M, Karasiewicz T (2009) Polym Test 28:412CrossRefGoogle Scholar
  15. 15.
    Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Polym Degrad Stabil 93:321CrossRefGoogle Scholar
  16. 16.
    Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stabil 95:116CrossRefGoogle Scholar
  17. 17.
    Cosate de Andrade MF (2015) Estudo da avaliação de ciclo de vida do PLA: comparação entre a reciclagem química, mecânica e compostagem. Masters dissertation. UNICAMP, CampinasGoogle Scholar
  18. 18.
    International Organization for Standardization (2006) ISO 14040. Environmental management. Life cycle assessment. Principles and frameworkGoogle Scholar
  19. 19.
    International Organization for Standardization (2006) ISO 14044. Environmental management. Life cycle assessment. Requirements and guidelinesGoogle Scholar
  20. 20.
    Mallet B, Lamnawar K, Maazouz A (2014) Polym Eng Sci 54:840CrossRefGoogle Scholar
  21. 21.
    Jaszkiewicz A, Bledzki AK, van der Meer R, Franciszczak P, Meljon A (2014) Polym Bull 71:1675CrossRefGoogle Scholar
  22. 22.
    Meng Q-K, Heuzey M-C, Carreau PJ (2012) Int Polym Proc 27:505CrossRefGoogle Scholar
  23. 23.
    Garraín D, Vidal R, Franco V, Martínez P (2008) Residuos 104:58Google Scholar
  24. 24.
    Perugini F, Mastellone ML, Arena U (2005) Environ Prog 24:137CrossRefGoogle Scholar
  25. 25.
    Martínez GAR (2011) Modelagem e simulação do processo de produção de PLA (poli-ácido láctico) obtido a partir de fontes renováveis para uso biomédico. Masters dissertation. UNICAMP, CampinasGoogle Scholar
  26. 26.
    Piemonte V, Gironi F (2013) J Polym Environ 21:313CrossRefGoogle Scholar
  27. 27.
    Kumar Suri A, Banerjee S (2006) Tin Mater Sci Technol. doi: 10.1002/9783527603978.mst0079
  28. 28.
    Asthana N, Kolah A, Vu DT, Lira CT, Miller DJA (2005) Org Process Res Dev 9:599CrossRefGoogle Scholar
  29. 29.
    Vu DT, Kolah AK, Asthana NS, Peereboom L, Lira CT, Miller DJ (2005) Fluid Phase Equilib 236:125CrossRefGoogle Scholar
  30. 30.
    Krause MJ, Townsend TG (2016) Environ Sci Technol Lett 3:166CrossRefGoogle Scholar
  31. 31.
    Gentil E, Christensen TH, Aoustin E (2009) Waste Manag Res 27:696CrossRefGoogle Scholar
  32. 32.
    International Organization for Standardization (2007) ISO 14855-2. Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—method by analysis of evolved carbon dioxide-Part 2: gravimetric measurement of carbon dioxide evolved in a laboratory-scale testGoogle Scholar
  33. 33.
    Souza PMS, Morales AR, Mei LHI (2014) Polímeros 24:110CrossRefGoogle Scholar
  34. 34.
    Ministério do Meio Ambiente (2010) Manual para implantação de compostagem e de coleta seletiva no âmbito de consórcios públicosGoogle Scholar
  35. 35.
    Razza F, Innocenti FD (2012) Asia-Pac J Chem Eng 7:S301CrossRefGoogle Scholar
  36. 36.
    Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2008) A life cycle impact assessment method which comprises harmonised category indicator at the midpoint and the endpoint level. First edition report 1: characterisationGoogle Scholar
  37. 37.
    Frischknecht R, Jungbluth N et al (2003) Implementation of life cycle impact assessment methods: final Report Ecoinvent 2000. Swiss Centre for LCI, DuebendorfGoogle Scholar
  38. 38.
    Ministério de Minas e Energia (MME) (2015) Resenha Energética Brasileira. Ministério de Minas e EnergiaGoogle Scholar
  39. 39.
    Siqueira JE, Henkes JA (2014) R Gest Sust Ambient 3:359Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marina F. Cosate de Andrade
    • 1
    Email author
  • Patrícia M. S. Souza
    • 1
  • Otávio Cavalett
    • 2
  • Ana R. Morales
    • 1
  1. 1.Department of Materials Engineering and Bioprocess, School of Chemical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)CampinasBrazil

Personalised recommendations