Journal of Polymers and the Environment

, Volume 24, Issue 1, pp 64–71 | Cite as

Evaluation of the Effect of Chemical or Enzymatic Synthesis Methods on Biodegradability of Polyesters

  • Laurent Goujard
  • Pierre-Jean Roumanet
  • Bruno Barea
  • Yann Raoul
  • Fabio Ziarelli
  • Jean Le Petit
  • Nathalie Jarroux
  • Elisée Ferré
  • Philippe Guégan
Original Paper


This work compares the biodegradability of polyesters produced by an esterification reaction between glycerol and oleic di-acid (D 18:1) issued from green chemical pathways, via either classical thermo-chemical methods, or an enzymatic method using the immobilized lipase of Candida antartica B (Novozym 435). An elastomeric polymer synthesized by enzymatic catalysis is more biodegradable than an elastomeric thermo-chemical polyester synthesized by a standard chemical procedure. This difference lies in percentage of the dendritic motifs, in values of the degree of substitution, and certainly in cross-links inducing an hyper-branched structure less accessible to the lipolytic enzymes in a waste treatment plant. However, when the elastomeric polymer synthesized by enzymatic catalysis is processed at high temperature as required for certain industrial applications, it presents an identical rate of biodegradation than the chemical polyester. The advantages of the thermo-chemical methods are greater speed and lower cost. Enzymatic synthesis appears be suited to producing polyesters, devoid of metallic catalysts, which must be used without processing at high temperature to keep a high biodegradability.


Chemical polyesters Enzymatic polyesters Biodegradability 


  1. 1.
    Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  2. 2.
    Weyland M, Daro A, David C (1995) Polym Degrad Stab 48:275–289CrossRefGoogle Scholar
  3. 3.
    Jakubowicz I (2003) Polym Degrad Stab 80:39–43CrossRefGoogle Scholar
  4. 4.
    Koutny M, Sancelme M, Dabin C, Pichon N, Delort A-M, Lemaire J (2006) Polym Degrad Stab 91:1496–1503Google Scholar
  5. 5.
    Kawai F, Watanabe M, Shibata M, Yokoyama S, Sudate Y, Hayashi S (2004) Polym Degrad Stab 86:105–114CrossRefGoogle Scholar
  6. 6.
    Muller R (2003) Synthèse du projet européen SMT sur la biodégradabilité des matériauxGoogle Scholar
  7. 7.
    Bewa H (2005) Biodégradabilité et matériaux polymers biodegradables. Note de synthèse ADEME.
  8. 8.
    Avérous L (2004) J Macromol Sci 44:231–274CrossRefGoogle Scholar
  9. 9.
    Gandini A (2011) Green Chem 13:1061–1083CrossRefGoogle Scholar
  10. 10.
    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnol Adv 25:148–175CrossRefGoogle Scholar
  11. 11.
    Lunt J (1998) Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  12. 12.
    Edlund U, Albertson A-C (2003) Adv Drug Deliv Rev 55:585–609CrossRefGoogle Scholar
  13. 13.
    Wolf O, Crank M, Patel M, Marscheider-Weidermann F, Schleich J, Husing B, Angerer G (2005) Techno-economic feasibility of large-scale production of bio-based polymers in Europe. Polylactic acid (PLA). European Science and Technology Observatory, EUR 22103 EN, pp 50-64Google Scholar
  14. 14.
    Roumanet P-J, Laflèche F, Jarroux N, Raoul Y, Claude S, Guégan Ph (2013) Eur Polym J 49:813–822CrossRefGoogle Scholar
  15. 15.
    Fradet A, Maréchal E (1982) Adv Polym Sci 43:51–142CrossRefGoogle Scholar
  16. 16.
    Fradet A, Tessier M (2003) Polyesters. In: Rogers ME, Long TE (eds) Synthetic methods in step-growth polymers. Wiley, Hoboken, pp 17–132CrossRefGoogle Scholar
  17. 17.
    Jaeger KE, Eggert T (2002) Curr Opin Biotechnol 13:390–397CrossRefGoogle Scholar
  18. 18.
    Hasan F, Shah AA, Hameed A (2006) Enzyme Microb Technol 39:235–251CrossRefGoogle Scholar
  19. 19.
    Lucas N, Bienaime C, Belloy C (2008) Chemosphere 73:429–442CrossRefGoogle Scholar
  20. 20.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246–265CrossRefGoogle Scholar
  21. 21.
    Da Silva G, Mack M, Contiero J (2009) Biotechnol Adv 27:30–39CrossRefGoogle Scholar
  22. 22.
    Yang Y, Lu W, Zhang X, Xie W, Cai M, Gross R (2010) Biomacromolecules 11:259–268CrossRefGoogle Scholar
  23. 23.
    Kulshrestha AS, Gao W, Gross R (2005) Macromolecules 38:3193–3204CrossRefGoogle Scholar
  24. 24.
    Yang Y, Lu W, Cai J, Hou Y, Ouyang S, Xie W, Gross AA (2011) Macromolecules 44:1977–1985CrossRefGoogle Scholar
  25. 25.
    Zhang Y-R, Spinella S, Xie W, Cai J, Yang Y, Wang Y-Z, Gross R (2013) Eur Polym J 49:793–803CrossRefGoogle Scholar
  26. 26.
    Christensen MW, Andersen L, Husum TL, Kirk O (2003) Euro J Lipid Sci Technol 105:318–321CrossRefGoogle Scholar
  27. 27.
    Montaudo G, Rizzarelli P (2000) Polym Degrad Stab 70:305–314CrossRefGoogle Scholar
  28. 28.
    Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degrad Stab 91:620–662CrossRefGoogle Scholar
  29. 29.
    Rabiller C, Maze F (1989) Magn Reson Chem 27:582–584CrossRefGoogle Scholar
  30. 30.
    Mazur AW, Hiler GD, Lee SSC, Armstrong MP, Wendel JD (1991) Chem Phys Lipids 60:189–199CrossRefGoogle Scholar
  31. 31.
    Spyros A, Phillipidis A, Photis P (2004) J Agric Food Chem 52:157–164CrossRefGoogle Scholar
  32. 32.
    Lim L-T, Auras R, Rubino M (2008) Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  33. 33.
    Gleadall A, Pan J, Atkinson H (2012) Polym Degrad Stab 97:1616–1620CrossRefGoogle Scholar
  34. 34.
    Mochizuki M, Hirami M (1997) Polym Adv Technol 8:203–209CrossRefGoogle Scholar
  35. 35.
    Weir N, Buchanan F, Orr J, Dickson G (2004) Proc Inst Mech Eng H 218:307–319CrossRefGoogle Scholar
  36. 36.
    Weir N, Buchanan F, Orr J, Farrar D, Dickson G (2004) Proc Inst Mech Eng H 218:321–330CrossRefGoogle Scholar
  37. 37.
    Sawada H (1998) Polym Degrad Stab 59:365–370CrossRefGoogle Scholar
  38. 38.
    Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117–132CrossRefGoogle Scholar
  39. 39.
    Rudnik E, Brassioulis D (2011) Ind Crops Prod 33:648–658CrossRefGoogle Scholar
  40. 40.
    Widjaja A, Yeh T-H, Ju Y-H (2008) J Chin Inst Chem Eng 39:413–418CrossRefGoogle Scholar
  41. 41.
    Hölter D, Burgath A, Frey H (1997) Acta Polym 48:30–35CrossRefGoogle Scholar
  42. 42.
    Umare SS, Chandure AS, Pandey RA (2009) Polym Degrad Stab 92:464–479CrossRefGoogle Scholar
  43. 43.
    Gottschalk G (1979) Bacterial metabolism. Springer, New York, pp 34–78Google Scholar
  44. 44.
    Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1986) The microbial world, vol 07632, 5th edn. Prentice-Hall, Englewood Cliffs, pp 183–195Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laurent Goujard
    • 1
  • Pierre-Jean Roumanet
    • 2
  • Bruno Barea
    • 3
  • Yann Raoul
    • 4
  • Fabio Ziarelli
    • 5
  • Jean Le Petit
    • 1
  • Nathalie Jarroux
    • 2
  • Elisée Ferré
    • 1
  • Philippe Guégan
    • 6
    • 7
  1. 1.IMBE, UMR CNRS - IRD 7263, Faculty of Saint-Jérôme, Case 452Aix-Marseille UniversityMarseille Cedex 20France
  2. 2.Team of Material Polymers of Interfaces, LAMB, CNRS UMR 8587University of Evry Val d’EssoneEvryFrance
  3. 3.CIRAD-LipotechnieSUPAGRO/INRA – UMRIATE 1208Montpellier Cedex 1France
  4. 4.ONIDOLParis Cedex 08France
  5. 5.CNRS-FR1739, Faculté de Saint-Jérôme, Case 512Université Aix-MarseilleMarseille Cedex 20France
  6. 6.IPCM, Chimie des Polymères, Sorbonne UniversitésUPMC University ParisParisFrance
  7. 7.CNRS, IPCMChimie des PolymèresParisFrance

Personalised recommendations