Journal of Polymers and the Environment

, Volume 23, Issue 4, pp 437–448 | Cite as

Novel Mineral and Organic Materials from Agro-Industrial Residues as Fillers for Natural Rubber

  • Cindy S. Barrera
  • Katrina CornishEmail author
Original Paper


Bio-based materials are being developed, increasingly, because of the need for sustainable, environmentally friendly, processes and products. We have made natural rubber composites containing low cost fillers derived from agro-industrial wastes, namely, eggshells, carbon fly ash, processing tomato peels and guayule bagasse. Composites manufactured with 35 phr (parts per hundred rubber) of carbon black (particle size 108 ± 31 nm) were used as a reference filled material. The amount of carbon black was gradually replaced by a specific waste-derived macro (<300 µm diameter) or micro (<38 µm diameter) filler. Despite differences in particle size distribution and surface chemistry, the tensile properties of micro sized tomato peels composite were similar to those of the carbon black reference composite. Composites manufactured using micro sized particles at low loadings (5 and 10 phr) of carbon fly ash and eggshells, as co-fillers with carbon black, also demonstrated comparable tensile results to those of composites manufactured solely with carbon black. Hierarchical cluster analysis partitioned the data into five groups of composites having statistically similar mechanical properties. Composites containing micro sized particles at low loadings (5 and 10 phr) were grouped in clusters 1, 2 and 5. These clusters gathered composites with the highest tensile strength and 300 % modulus. As the amount of non-carbon black filler increased above 10 phr and up to 35 phr (maximum filler loading used), the composites became weaker than the carbon black filled composites and modulus decreased.


Renewable materials Natural rubber Bio-based composites Reinforcing 



We thank Ohio Third Frontier, Ohio Research Scholars Program in Technology-Enabling and Emergent Materials (TECH 09-026), and USDA National Institute of Food and Agriculture (Hatch project 230837) that provided financial support for this project. We also thank Fulbright for sponsoring our student Cindy Barrera during her Ph.D. Program.


  1. 1.
    Steinbüchel A (2003) Curr Opin Microbiol 6:261CrossRefGoogle Scholar
  2. 2.
    Chenal JM, Gauthier C, Chazeau L, Guy L, Bomal Y (2007) Polymer 48:6893CrossRefGoogle Scholar
  3. 3.
    Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Compos Part A Appl Sci 43:735CrossRefGoogle Scholar
  4. 4.
    Rodgers B, Waddell W (2013) In: Mark JE, Erman B, Roland M (eds) The science and technology of rubber. Academic Press, London, pp 417–471CrossRefGoogle Scholar
  5. 5.
    Fröhlich J, Niedermeier W, Luginsland HD (2005) Compos Part A Appl Sci 36:449CrossRefGoogle Scholar
  6. 6.
    Andrio A, Compañ V, Reis-Nunes RC, López ML, Riande E (2000) J Membr Sci 178:65CrossRefGoogle Scholar
  7. 7.
    Ismail H, Edyham MR, Wirjosentono B (2002) Polym Test 21:139CrossRefGoogle Scholar
  8. 8.
    Jacob M, Thomas S, Varughese KT (2004) Compos Sci Technol 64:955CrossRefGoogle Scholar
  9. 9.
    Bai W, Li K (2009) Compos Part A Appl Sci 40:1597CrossRefGoogle Scholar
  10. 10.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Ind Crop Prod 32:627CrossRefGoogle Scholar
  11. 11.
    Bendahou A, Kaddami H, Dufresne A (2010) Eur Polym J 46:609CrossRefGoogle Scholar
  12. 12.
    Pasquini D, de Morais Teixeira E, da Silva Curvelo AA, Belgacem MN, Dufresne A (2010) Ind Crop Prod 32:486CrossRefGoogle Scholar
  13. 13.
    Majeed K, Jawaid M, Hassan A, AbuBakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Mater Des 46:391CrossRefGoogle Scholar
  14. 14.
    Intharapat P, Kongnoo A, Kateungngan K (2013) J Polym Environ 21:245CrossRefGoogle Scholar
  15. 15.
    Ishak ZAM, Bakar AA (1995) Eur Polym J 31:259CrossRefGoogle Scholar
  16. 16.
    Thornsbury S, Farah Wells H, Bond J (2013) Vegetable and pulses yearbook data. A report for the economic research service, USDAGoogle Scholar
  17. 17.
    United States Department of Agriculture, Chickens and Eggs 2013 Summary (National Agricultural Statistics Service 2014)Google Scholar
  18. 18.
    Hamilton RG, Cornish K (2010) Ind Crop Prod 31:197CrossRefGoogle Scholar
  19. 19.
    Byers JT (2001) In: Baranwal KC, Stephens HL (eds) Basic elastomer technology. American Chemical society, Rubber division, OH, pp 82–111Google Scholar
  20. 20.
    ASTM Standard D3182-15 (2015) Standard practice for rubber—materials, equipment, and procedures for mixing standard compounds and preparing standard vulcanized sheets. ASTM International, West Conshohocken, PA. doi: 10.1520/D3182-15 Google Scholar
  21. 21.
    ASTM Standard D412-06a (2013) Standard test methods for vulcanized rubber and thermoplastic elastomers—tension. ASTM International, West Conshohocken, PA. doi: 10.1520/D0412-06AR13 Google Scholar
  22. 22.
    Pal K, Rajasekar R, Kang DJ, Zhang ZX, Pal SK, Das CK, Kim JK (2010) Mater Design 31:1156CrossRefGoogle Scholar
  23. 23.
    Pal K, Pal SK, Das CK, Kim JK (2012) Mater Des 35:863CrossRefGoogle Scholar
  24. 24.
    Afiq MM, Azura AR (2013) Int Biodeterior Biodegr 85:139CrossRefGoogle Scholar
  25. 25.
    Xu T, Jia Z, Luo Y, Jia D, Peng Z (2015) Appl Surf Sci 328:306CrossRefGoogle Scholar
  26. 26.
    Ali AMM, Subban RHY, Bahron H, Winie T, Latif F, Yahya MZA (2008) Ionics 14:491CrossRefGoogle Scholar
  27. 27.
    Riyajan SA, Sasithornsonti Y, Phinyocheep P (2012) Carbohyd Polym 89:251CrossRefGoogle Scholar
  28. 28.
    Fernandez-Berridi MJ, Gonzalez N, Mugica A, Bernicot C (2006) Thermochim Acta 444:65CrossRefGoogle Scholar
  29. 29.
    Sae-Oui P, Rakdee C, Thanmathorn P (2002) J Appl Polym Sci 83:2485CrossRefGoogle Scholar
  30. 30.
    Engin B, Demirtas H, Eken M (2006) Radiat Phys Chem 75:268CrossRefGoogle Scholar
  31. 31.
    Sumayya A, Panicker CY, Varghese HT, Harikumar B (2008) Rasayan J Chem 1:548Google Scholar
  32. 32.
    Gönen M, Öztürk S, Balköse D, Okur S, Ülkü S (2010) Ind Eng Chem Res 49:1732CrossRefGoogle Scholar
  33. 33.
    Mihajlović S, Sekulić Ž, Daković A, Vućinić D, Jovanović V, Stojanović J (2009) Ceram-Silikaty 53:268Google Scholar
  34. 34.
    Mihajlović SR, Vućinić DR, Sekulić ŽT, Milićević SZ, Kolonja BM (2013) Powder Technol 245:208CrossRefGoogle Scholar
  35. 35.
    Khan I, Bhat AH (2014) In: Thomas S, Maria HJ, Joy JP, Chan CH, Pothen LA (eds) Natural rubber materials, composites and nanocomposites. The Royal Society of Chemistry, London, pp 467–487Google Scholar
  36. 36.
    Nakayama FS (2005) Ind Crop Prod 22:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Food, Agricultural and Biological Engineering, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA
  2. 2.Horticulture and Crop Science, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA

Personalised recommendations