Journal of Polymers and the Environment

, Volume 23, Issue 4, pp 506–516 | Cite as

Keratin Extracted from Chicken Feather Waste: Extraction, Preparation, and Structural Characterization of the Keratin and Keratin/Biopolymer Films and Electrospuns

  • Siriorn Isarankura Na Ayutthaya
  • Supachok Tanpichai
  • Jatuphorn WootthikanokkhanEmail author
Original Paper


In this work, keratin was extracted from chicken feather waste via an environment-friendly method, sulphitolysis method, by using various sodium metabisulphite contents (0.0–0.5 M). Percentage yield and molecular weight of the extracted keratin were characterized by gravimetry and gel electrophoresis (SDS-PAGE), respectively. It was found that the yield increased, with the increase of sodium meta-bisulphite content, to the maximum value of 87.6 % yield, by using sodium meta-bisulphite content at 0.2 M. Molecular weight range of the product also decreased with the increase of the sodium meta-bisulphite content. The extracted keratin, with highest molecular weight ranged between 12 and 20 kDa, was further used for fabricating into fibers by using the electrospinning process. It was found that pure keratin solution could not be electrospun into fiber. However, by blending keratin with more than 10 wt% PLA, the fibers can be prepared. Results from FTIR and DSC also reveal that the crystal structure of the keratin changed from the β-sheet structure (rigid and small displacement characteristic) to the α-helix structure (elastic and large displacement characteristic) after keratin/PLA blends (10–50 wt% keratin) were prepared by the electrospinning method.


Chicken feather waste Keratin Extraction Nanofiber Electrospinning 



The authors are sincerely grateful to the Office of Higher Education Commission, strategic scholarships for a frontier research network program and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission for providing a research grant to support this work (Project No. 56000558). We would also like to thank Ms. Thitiporn Teeravivattanakit, Asst. Prof. Dr. Chakrit Tachaapaikoon and Assoc. Prof. Dr. Khanok Ratanakhanokchai, Enzyme Technology Laboratory, Pilot Plant Development and Training Institute, KMUTT for supporting gel electrophoresis laboratory.


  1. 1.
    Barbut S (2002) Poultry products processing: an industry guide. CRC Press LLC, Boca RatonGoogle Scholar
  2. 2.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Biomacromolecules 3:232CrossRefGoogle Scholar
  3. 3.
    Hajra MG, Mehta K, Chase GG (2003) Sep Purif Technol 30:79CrossRefGoogle Scholar
  4. 4.
    Ki CS, Gang EH, Um IC, Park YH (2007) J Membr Sci 302:20CrossRefGoogle Scholar
  5. 5.
    Chinta SK, Landage SM, Krati Y (2013) IJIRSET 2:1158Google Scholar
  6. 6.
    Bhushan B (2010) Biophysics of human hair structural, nanomechanical, and nanotribological studies. Springer, HeidelbergCrossRefGoogle Scholar
  7. 7.
    Ondarcuhu T, Joachim C (1998) Europhys Lett 42:215CrossRefGoogle Scholar
  8. 8.
    Feng JJ (2002) Phys Fluids 14:3912CrossRefGoogle Scholar
  9. 9.
    Ma PX, Zhang R, Biomed J (1999) Mater Res 46:60Google Scholar
  10. 10.
    Hartgerink JD, Beniash E, Stupp SI (2001) Science 294:1684CrossRefGoogle Scholar
  11. 11.
    Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, SingaporeCrossRefGoogle Scholar
  12. 12.
    Zoccola M, Aluigi A, Vineis C, Tonin C, Ferrero F, Piacentino MG (2008) Biomacromolecules 10:2819CrossRefGoogle Scholar
  13. 13.
    Yuan J, Xing Z-C, Park S-W, Geng J, Kang I-K (2009) Macromol Res 17:850CrossRefGoogle Scholar
  14. 14.
    Yao C, Li X, Song T (2007) J Appl Polym Sci 103:380CrossRefGoogle Scholar
  15. 15.
    Selling GW, Woods KK, Sessa D, Biswas A (2008) Macromol Chem Phys 209:1003CrossRefGoogle Scholar
  16. 16.
    Weijie X, David K, Wen Y, Yiqi Y (2008) Polym Int 57:1110CrossRefGoogle Scholar
  17. 17.
    Jianga Q, Reddya N, Yang Y (2010) Acta Biomater 6:4042CrossRefGoogle Scholar
  18. 18.
    Suwantong O, Pavasant P, Supaphol P (2011) Chiang Mai J Sci 38:56Google Scholar
  19. 19.
    Tonin C, Aluigi A, Vineis C, Varesano A, Montarsolo A, Ferrero F (2007) J Therm Anal Calorim 89:601CrossRefGoogle Scholar
  20. 20.
    Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Eur Polym J 44:2465CrossRefGoogle Scholar
  21. 21.
    Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) J Appl Polym Sci 91:756CrossRefGoogle Scholar
  22. 22.
    Yin G-B, Zhang Y-Z, Wu J-L, Wang S-D, Shi D-B, Fu W-G (2009) J Biomed Mater Res A 93:158Google Scholar
  23. 23.
    Zhang J, Jiang L, Zhu L (2006) Biomacromolecules 7:1551CrossRefGoogle Scholar
  24. 24.
    Varesano A, Aluigi A, Vineis C, Tonin C (2008) J Polym Sci Polym Phys 46:1193CrossRefGoogle Scholar
  25. 25.
    Juan L, Fei SX, Feng G, Qi LL, Rui C, Ying CC, Zhong Z (2014) Sci China Tech Sci 57:239CrossRefGoogle Scholar
  26. 26.
    Graham CE, Waitkoff HK, Hier SW (1949) J Biol Chem 177:529Google Scholar
  27. 27.
    O’Donnell IJ (1973) Aust J Biol Sci 26:401Google Scholar
  28. 28.
    Arai KM, Takahashi R, Yokote Y, Akahane K (1983) J Biochem E 132:501CrossRefGoogle Scholar
  29. 29.
    Sharma V, Jaishankar A, Wang Y-C, McKinley GH (2011) Soft Mater 7:5150CrossRefGoogle Scholar
  30. 30.
    Neto WAR, Pereira IHL, Ayres E, de Paula ACC, Averous L, Góes AM, Oréfice RL, Bretas RES (2012) Polym Degrad Stab 97:2037CrossRefGoogle Scholar
  31. 31.
    Um IC, Kweon HY, Park YH, Hudson S (2001) Int J Biol Macromol 29:91CrossRefGoogle Scholar
  32. 32.
    Aluigi A, Corbellini A, Rombaldoni F, Zoccola M, Canetti M (2013) Int J Biol Macromol 57:30CrossRefGoogle Scholar
  33. 33.
    Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Polymer 40:7397CrossRefGoogle Scholar
  34. 34.
    Yuan J, Shen J, Kang I-K (2008) Polym Int 57:1188CrossRefGoogle Scholar
  35. 35.
    Surewicz WK, Mantsch HH, Chapman D (1993) Biochem US 32:389CrossRefGoogle Scholar
  36. 36.
    Buehler MJ, Keten S (2008) Elast Nano Res 1:63CrossRefGoogle Scholar
  37. 37.
    Byler DM, Susi H (1986) Biopolymers 25:469CrossRefGoogle Scholar
  38. 38.
    Jiang L, Wolcott MP, Zhang J (2014) J Biomacromol 7:199CrossRefGoogle Scholar
  39. 39.
    Paswan S (2012) Studying the arsenic absorption by keratin protein extracted from human hair. National Institute of Technology, RourkelaGoogle Scholar
  40. 40.
    Spei M, Holzem R (1987) Colloid Polym Sci 265:965CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Siriorn Isarankura Na Ayutthaya
    • 1
  • Supachok Tanpichai
    • 2
  • Jatuphorn Wootthikanokkhan
    • 1
    Email author
  1. 1.Division of Materials Technology, School of Energy, Environment and MaterialsKing Mongkut’s University of Technology ThonburiBangkokThailand
  2. 2.Learning InstituteKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations