Advertisement

Journal of Polymers and the Environment

, Volume 23, Issue 1, pp 126–136 | Cite as

Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites

  • A. A. Pérez-Fonseca
  • J. R. Robledo-OrtízEmail author
  • F. J. Moscoso-Sánchez
  • F. J. Fuentes-Talavera
  • D. Rodrigue
  • R. González-Núñez
Original Paper

Abstract

This work investigates the combination of different fiber sizes (self-hybridization) on the mechanical properties of composite materials. High density polyethylene composites based on agave and pine fibers were prepared using different ratios of long and short fibers. Furthermore, the effect of coupling agent (maleated polyethylene) versus self-hybridization was evaluated. Several studies in the past have shown that coupling agents can improve the mechanical properties of natural fiber composites. Nevertheless, this study shows that a combination of two particle sizes is also an interesting option to increase mechanical properties like impact strength, as well as tensile and flexural moduli. On the other hand, the presence of coupling agent enhanced the fiber-matrix interfacial adhesion and its effect was more evident on the tensile strength.

Keywords

Self-hybrid composites Mechanical properties Coupling agent Natural fibers 

Notes

Acknowledgments

This research was supported by Mexico’s National Council for Science and Technology (CONACyT grant CB-2012-01 # 181551).

References

  1. 1.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Prog Polym Sci 37:1552CrossRefGoogle Scholar
  2. 2.
    Kabir MM, Wang H, Lau KT, Cardona F (2012) Compos B 43:2883CrossRefGoogle Scholar
  3. 3.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) Compos B 42:856CrossRefGoogle Scholar
  4. 4.
    Danyadi L, Janecska T, Szabo Z, Nagy G, Moczo J, Pukanszky B (2007) Compos Sci Technol 67:2838CrossRefGoogle Scholar
  5. 5.
    Leduc S, Galindo Ureña JR, González-Núñez R, Quirarte JR, Riedl B, Rodrigue D (2008) Polym Compos 16:115Google Scholar
  6. 6.
    Pérez-Fonseca AA, Gómez C, Dávila H, González-Nuñez R, Robledo-Ortíz JR, Vázquez-Lepe MO, Herrera-Gómez A (2012) Ind Eng Chem Res 51:5939CrossRefGoogle Scholar
  7. 7.
    Tissandier C, Vazquez-Fletes RC, González-Núñez R, Rodrigue D (2012) J Mater Sci Eng A 2:677Google Scholar
  8. 8.
    Ashori A, Sheshmani S (2010) Bioresour Technol 101:4717CrossRefGoogle Scholar
  9. 9.
    Ashori A, Nourbakhsh A, Kazemi-Tabrizi A (2014) Polym Plast Tech Eng 53:1CrossRefGoogle Scholar
  10. 10.
    Kiani H, Ashori A, Mozaffari SA (2011) Polym Bull 66:797CrossRefGoogle Scholar
  11. 11.
    Pérez-Fonseca AA, Robledo-Ortíz JR, Ramirez-Arreola DE, Ortega-Gudiño P, Rodrigue D, González-Núñez R (2014) Mater Des 64:35CrossRefGoogle Scholar
  12. 12.
    Ashori A (2010) J Polym Environ 18:65CrossRefGoogle Scholar
  13. 13.
    Oh KH, Han KS (2007) Compos Sci Technol 67:1719CrossRefGoogle Scholar
  14. 14.
    Li Q, Siddaramaiah B, Kim NH, Yoo GH, Lee JH (2009) Compos B 40:218CrossRefGoogle Scholar
  15. 15.
    Isitman NH, Aykol M, Kaynak C (2012) J Mater Sci 47:702CrossRefGoogle Scholar
  16. 16.
    Ramezani-Kakroodi A, Leduc S, Rodrigue D (2012) J Appl Polym Sci 124:2494CrossRefGoogle Scholar
  17. 17.
    Kängsepp K, Poltimäe T, Liimand K, Kallakas H, Süld TM, Repeshova I, Goljandin D, Kers J (2014) The effect of wood flour fraction size on the properties of wood-plastic composites. 9th International DAAAM Baltic Conference, EstoniaGoogle Scholar
  18. 18.
    Lei Y, Wu Q, Clemons CM, Yao F, Xu Y (2007) J Appl Polym Sci 106:3958CrossRefGoogle Scholar
  19. 19.
    Lu JZ, Negulescu II, Wu Q (2005) Compos Interfaces 12:125CrossRefGoogle Scholar
  20. 20.
    Lee SY, Chun SJ, Doh GH, Kim JH (2010) Korean J Chem Eng 27:651CrossRefGoogle Scholar
  21. 21.
    Araujo JR, Waldman WR, De Paoli MA (2008) Polym Degrad Stabil 93:1770CrossRefGoogle Scholar
  22. 22.
    Bhat IUH, Abdul Khalil HPS, Nurul Fazita MR, Abdullah CK (2011) J Polym Environ 19:49CrossRefGoogle Scholar
  23. 23.
    Khalid M, Ali S, Abdullah LC, Ratnam CT, Thomas Choong SY (2006) Int J Eng Technol 3:79Google Scholar
  24. 24.
    Lu JZ, Negulescu II, Wu Q (2005) Compos Interface 12:125CrossRefGoogle Scholar
  25. 25.
    Nourbakhsh A, Ashori A (2008) Polym Compos 29:569CrossRefGoogle Scholar
  26. 26.
    Fuentes-Talavera FJ, Silva-Guzmán JA, Ramos-Quirarte J (2007) Obtención de materiales compuestos empleando polímeros naturales. AMAT Editorial, Guadalajara, MéxicoGoogle Scholar
  27. 27.
    Pérez-Fonseca AA, Robledo-Ortiz JR, Moscoso-Sánchez F, Rodrigue D, González-Núñez R (2014) Polym Compos 35:1798CrossRefGoogle Scholar
  28. 28.
    Kim SJ, Moon JB, Kim GH, Ha CS (2008) Polym Test 27:801CrossRefGoogle Scholar
  29. 29.
    Ichazo MN, Albano C, González J, Perera R, Candal MV (2001) Compos Struct 54:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. A. Pérez-Fonseca
    • 1
  • J. R. Robledo-Ortíz
    • 2
    Email author
  • F. J. Moscoso-Sánchez
    • 1
  • F. J. Fuentes-Talavera
    • 2
  • D. Rodrigue
    • 3
  • R. González-Núñez
    • 1
  1. 1.Departamento de Ingeniería QuímicaUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Departamento de Madera, Celulosa y PapelUniversidad de GuadalajaraLas Agujas, ZapopanMexico
  3. 3.Department of Chemical Engineering and CERMAUniversité LavalQuebec CityCanada

Personalised recommendations