Skip to main content
Log in

Rheological and Thermal Properties of Peroxide-Modified Poly(l-lactide)s for Blending Purposes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly-l-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic plastic materials in the packaging industry. Unfortunately, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures needed in extrusion coating processes is recognized. In the present work, one have addressed the problem by peroxide modification of commercial PLLA in order to obtain chain branching. Reactive extrusion of PLLA has been carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate, 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101) and benzoyl peroxide]. The peroxides were chosen due to their different decomposition rates at a reactive extrusion temperature of 190 °C. Changes in thermal properties (differential scanning calorimeter) and dynamic rheology, where studied. The rheological analyses were conducted at 240 °C as to mimic typical PLLA extrusion coating conditions. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies indicating the formation of branched/cross linked architectures. The branching is also supported by the size exclusion chromatography-chromatogram signals revealing the development of higher molecular weight species. The material property changes were dependent on the peroxide and the used peroxide concentration. Gel fraction analysis showed that the peroxides afforded different gel contents and especially 0.5 wt% peroxide produces both an extremely high molar mass and a cross linked structure, not perhaps well suited e.g., for further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization despite substantial cross linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rhim J, Ng PKW (2007) Crit Rev Food Sci Nutr 47:411–433

    Article  CAS  Google Scholar 

  2. Hartmann M, Whiteman N (2000) In polylactide, a new thermoplastic for extrusion coating, vol 1. TAPPI Press, Atlanta, pp 467–474

    Google Scholar 

  3. Lahtinen K, Maydannik P, Johansson P, Kääriäinen T, Cameron DC, Kuusipalo J (2011) Surf Coat Technol 205:3916–3922

    Article  CAS  Google Scholar 

  4. Ryan CM, Hartmann MH (1997) In Branching of poly(lactic acid) to increase melt strength for extrusion coating, vol 1. TAPPI Press, Atlanta, pp 139–144

    Google Scholar 

  5. Kang GB, Kim MH, Son Y, Park OO (2009) J Appl Polym Sci 111:3121–3127

    Article  CAS  Google Scholar 

  6. Toft N, Rigdahl M (2002) Int Polym Process 17:244–253

    Article  CAS  Google Scholar 

  7. Lachtermacher MG, Rudin A (1995) J Appl Polym Sci 58:2077–2094

    Article  CAS  Google Scholar 

  8. Ouchi T, Ichimura S, Ohya Y (2006) Polymer 47:429–434

    Article  CAS  Google Scholar 

  9. Korhonen H, Helminen A, Seppälä JV (2001) Polymer 42:7541–7549

    Article  CAS  Google Scholar 

  10. Liu J, Lou L, Yu W, Liao R, Li R, Zhou C (2010) Polymer 51:5186–5197

    Article  CAS  Google Scholar 

  11. Soedergaard A, Niemi M, Selin J, Naesman JH (1995) Ind Eng Chem Res 34:1203–1207

    Article  CAS  Google Scholar 

  12. Carlson D, Dubois P, Nie L, Narayan R (1998) Polym Eng Sci 38:311–321

    Article  CAS  Google Scholar 

  13. Takamura M, Nakamura T, Takahashi T, Koyama K (2008) Polym Degrad Stab 93:1909–1916

    Article  CAS  Google Scholar 

  14. Dean KM, Petinakis E, Meure S, Yu L, Chryss A (2012) J Polym Environ 20:741–747

    Article  CAS  Google Scholar 

  15. Sungsanit K, Kao N, Bhattacharya S, Pivsaart S (2010) Korea Aust Rheol J 22:187–195

    Google Scholar 

  16. Dorgan JR, Lehermeier H, Mang M (2000) J Polym Environ 8:1

    Article  Google Scholar 

  17. Liu J, Yu W, Zhou C (2011) J Rheol 55:545–570

    Article  CAS  Google Scholar 

  18. Takamura M, Nakamura T, Kawaguchi S, Takahashi T, Koyama K (2010) Polym J 42:600–608

    Article  CAS  Google Scholar 

  19. Soedergard A, Naesman JH (1994) Polym Degrad Stab 46:25–30

    Article  CAS  Google Scholar 

  20. Takamura M, Sugimoto M, Kawaguchi S, Takahash T, Koyama K (2012) J Appl Polym Sci 123:1468–1478

    Article  CAS  Google Scholar 

  21. Ramos VD, da Costa HM, Pereira AO, Rocha MCG, de S. Gomes A (2004) Polym Test 23:949–955

  22. Zulli F, Andreozzi L, Passaglia E, Augier S, Giordano M (2013) J Appl Polym Sci 127:1423–1432

    Article  CAS  Google Scholar 

  23. Wu D, Wu L, Zhang M, Zhao Y (2008) Polym Degrad Stab 93:1577–1584

    Article  CAS  Google Scholar 

  24. Schulze D, Roths T, Friedrich C (2005) Rheol Acta 44:485–494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Finnish Funding Agency for Technology and Innovation (TEKES) for financial support. We also wish to extend our sincere appreciation to Stora Enso Oyj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rosling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajeheian, M.B., Rosling, A. Rheological and Thermal Properties of Peroxide-Modified Poly(l-lactide)s for Blending Purposes. J Polym Environ 23, 62–71 (2015). https://doi.org/10.1007/s10924-014-0693-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0693-4

Keywords

Navigation