Skip to main content

Advertisement

Log in

Production of Polyhydroxyalkanoates from Crude Glycerol Using Recombinant Escherichia coli

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The high production cost of bio-based plastic polyhydroxyalkanoates (PHAs) limits their use as commercial products. Thus, systems for PHAs production from waste substrates could reduce production costs. Crude glycerol is a by-product of biodiesel fuel production and thus represents an inexpensive, abundant and promising carbon source for production of valorized fermentation products. In this study, industrial crude glycerol by-product from palm oil biodiesel production was used as the carbon source for production of PHAs by recombinant Escherichia coli. Crude glycerol supplemented at 1–5 % (v/v) supported production of poly(3-hydroxybutyrate) (P(3HB)) in E. coli-ABC Ah , which harbors the PHA synthetic genes for β-ketothiolase (PhaA Re ), acetoacetyl-CoA reductase (PhaB Re ) of Ralstonia eutropha and Polyhydroxyalkanoate (PHA) synthase (PhaC Ah ) of Aeromonas hydrophila. The highest P(3HB) content and productivity of 14 wt% of cell dry weight and 0.6 g/L, respectively, were obtained at 1 % (v/v) glycerol concentration. Production of P(3HB-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) was achieved using E. coli-ABC Ah J Ah , harboring genes for PhaA Re , PhaB Re , PhaC Ah , and the (R)-specific enoyl-CoA hydratase (PhaJ Ah ) of A. hydrophila. This led to the copolymer content of 3 wt% of cell dry weight with 1 mol% of 3HHx. Molecular weight and degradation temperature of the polymers were in the range of 110–130 kDa and 295–299 °C, respectively. These results indicated that crude glycerol could be an attractive carbon source for economical production of PHAs with properties for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang F, Hanna MA, Sun R (2012) Biotechnol Biofuels 5:13

    Article  CAS  Google Scholar 

  2. da Silva GP, Mack M, Contiero J (2009) Biotechnol Adv 27:30–39

    Article  Google Scholar 

  3. Peters D (2007) Adv Biochem Eng Biotechnol 105:1–30

    CAS  Google Scholar 

  4. Pyle DJ, Garcia RA, Wen Z (2008) J Agric Food Chem 56:3933–3939

    Article  CAS  Google Scholar 

  5. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) J Biosci Bioeng 100:260–265

    Article  CAS  Google Scholar 

  6. Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS (2013) Biotechnol Lett 35:831–842

    Article  CAS  Google Scholar 

  7. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) J Appl Microbiol 102:1437–1449

    Article  CAS  Google Scholar 

  8. Chen GQ, Zhang G, Park SJ, Lee SY (2001) Appl Microbiol Biotechnol 57:50–55

    Article  CAS  Google Scholar 

  9. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Appl Environ Microb 77:2847–2854

    Article  CAS  Google Scholar 

  10. Mothes G, Schnorpfeil C, Ackermann J-U (2007) Eng Life Sci 7:475–479

    Article  CAS  Google Scholar 

  11. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Process Biochem 44:509–515

    Article  CAS  Google Scholar 

  12. Ashby RD, Solaiman DKY, Foglia AT (2004) J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  13. Phithakrotchanakoon C, Champreda V, Aiba S, Pootanakit K, Tanapongpipat S (2013) Biosci Biotechnol Biochem 77:1262–1268

    Article  CAS  Google Scholar 

  14. Tsuge T, Taguchi K, Taguchi S, Doi Y (2003) Int J Biol Macromol 31:195–205

    Article  CAS  Google Scholar 

  15. Watanabe Y, Ichinomiya Y, Shimada D, Saika A, Abe H, Taguchi S, Tsuge T (2012) J Biosci Bioeng 113:286–292

    Article  CAS  Google Scholar 

  16. Lee SJ, Kim SB, Kang SW, Han SO, Park C, Kim SW (2012) Bioproc Biosyst Eng 35:85–92

    Article  CAS  Google Scholar 

  17. Desbois AP, Smith VJ (2010) Appl Microbiol Biotechnol 85:1629–1642

    Article  CAS  Google Scholar 

  18. Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Macromolecules 27:878–880

    Article  CAS  Google Scholar 

  19. Kawata Y, Aiba S (2010) Biosci Biotechnol Biochem 74:175–177

    Article  CAS  Google Scholar 

  20. Asrar J, Valentin HE, Berger PA, Tran M, Padgette SR, Garbow JR (2002) Biomacromolecules 3:1006–1012

    Article  CAS  Google Scholar 

  21. Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Biotechnol Progr 26:424–430

    CAS  Google Scholar 

  22. Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Int J Biol Macromol 25:43–53

    Article  CAS  Google Scholar 

  23. Foster LJR (2010) Biopolymers 243–256

Download references

Acknowledgments

We would like to thank Dr. Isao Noda for kindly providing standard P(3HB-co-3HHx) (Nodax™). Manuscript proofreading by Dr. Philip Shaw is appreciated. This work was supported by the Royal Golden Jubilee Ph.D. Program Scholarship Program (PHD/0268/2549), Mahidol University and a research grant from the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutipa Tanapongpipat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phithakrotchanakoon, C., Champreda, V., Aiba, Si. et al. Production of Polyhydroxyalkanoates from Crude Glycerol Using Recombinant Escherichia coli . J Polym Environ 23, 38–44 (2015). https://doi.org/10.1007/s10924-014-0681-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0681-8

Keywords

Navigation