Skip to main content
Log in

Mechanical Properties and Morphology of Poly(l-Lactic acid)/Nano-CaCO3 Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The tensile and impact properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate (nano-CaCO3) were measured at room temperature. The results showed that the tensile elastic modulus increased roughly linearly while the tensile yield strength, tensile fracture strength and tensile elongation at break (δ b ) decreased nonlinearly with increasing the nano-CaCO3 weight fraction (W f ); when W f was constant, the δ b increased with increasing tensile rates. Both the V-notched Izod impact strength and V-notched Charpy impact strength showed the non-linear increase with increasing W f . The impact fracture surface was observed by means of a scanning electronic microscope to understand the toughening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liang JZ, Tang CY, Zhou L, He L, Tsui CP (2011) Melt density and flow property of PDLLA/nano-CaCO3 bio-composites. Compos B 42:1897–1900

    Article  Google Scholar 

  2. Liang JZ, Tang CY, Zhou L, Tsui CP, Li FJ (2012) Melt flow behavior in capillary extrusion of nanosized calcium carbonate filled poly(l-lactic acid) bio-composites. Polym Eng Sci 52(8–9):1830–1844

    Google Scholar 

  3. Wang RY, Wang SF, Zhang Y, Wan CY, Ma PM (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33

    Article  CAS  Google Scholar 

  4. Liang JZ, Duan DR, Tang CY, Tsui CP, Chen DZ (2013) Tensile properties of PLLA/PCL composites filled with nanometer calcium carbonate. Polym Test 32(3):617–621

    Article  CAS  Google Scholar 

  5. Dong HQ, Liu LJ, Li YY (2011) Shape-memory behavior of poly(l-lactide)/poly(epsilon-caprolactone) blends. Adv Mater Res 266:171–174

    Article  CAS  Google Scholar 

  6. Shen TF, Liang LY, Lu MG (2011) Novel biodegradable shape memory composites based on PLA and PCL crosslinked by polyisocyanate. Adv Biomed Eng 302–305

  7. Liang JZ, Duan DR, Tang CY, Tsui CP, Chen DZ (2013) Flexural properties of PLLA and PCL shape memory composites filled with nanometer calcium carbonate. J Macromol Sci Phys 52(7):964–972

    Article  CAS  Google Scholar 

  8. Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295

    Article  CAS  Google Scholar 

  9. Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Melt flow behavior in capillary extrusion of nanosized calcium carbonate filled PLLA/PCL bio-composites. J Polym Envir 21(3):857–863

    Article  CAS  Google Scholar 

  10. Zhou S, Zheng X, Yu X, Wang J, Weng J, Li X, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(d, l-Lactide)/hydroxyapatite nanocomposites. Chem Mater 19:247–253

    Article  CAS  Google Scholar 

  11. Meng Q, Hu J, Ho K, Ji F, Chen S (2009) The shape memory properties of biodegradable chitosan/poly(l-lactide) composites. J Polym Environ 17:212–224

    Article  CAS  Google Scholar 

  12. Zhong J, Zhang L, Yu J, Tan T, Zhang X (2010) Studies of different kinds of fiber pretreating on the properties of PLA/sweet sorghum fiber composites. J Appl Polym Sci 117(3):1385–1393

    CAS  Google Scholar 

  13. Roussiere F, Baley C, Godard G, Burr D (2012) Compressive and tensile behaviours of PLLA matrix composites reinforced with randomly dispersed flax fibres. Appl Compos Mater 19(2):171–188

    Article  CAS  Google Scholar 

  14. Koivula H, Toivakka M, Gane P (2012) Short time spreading and wetting of offset printing liquids on model calcium carbonate coating structures. J Colloid Interface Sci 369:426–434

    Article  CAS  Google Scholar 

  15. Liang JZ (2012) Reinforcing and toughening theories of polymer composites. Press of South China University of Technology, Guangzhou

    Google Scholar 

  16. Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Crystalline properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate. Compos B 45(1):1646–1650

    Article  CAS  Google Scholar 

  17. Nicolais L, Narkis M (1971) Stress-strain behavior of styrene-acrylonitrile/glass bead composites in the glassy region. Polym Eng Sci 11(3):194–199

    Article  CAS  Google Scholar 

  18. Liang JZ, Li RKY (1998) Mechanical properties and morphology of glass bead filled polypropylene composites. Polym Compos 19(6):698–703

    Article  CAS  Google Scholar 

  19. Liang JZ, Li RKY (2001) Measurement of dispersion of glass beads in PP matrix. J Reinf Plast Compos 20(8):630–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the support from the Research Committee of the Hong Kong Polytechnic University (Project code: G-YK05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Z. Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J.Z., Duan, D.R., Tang, C.Y. et al. Mechanical Properties and Morphology of Poly(l-Lactic acid)/Nano-CaCO3 Composites. J Polym Environ 23, 21–29 (2015). https://doi.org/10.1007/s10924-014-0661-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0661-z

Keywords

Navigation