Development of Lignin and Nanocellulose Enhanced Bio PU Foams for Automotive Parts


The green rigid polyurethane (PU) foam has been developed with 100 % soy polyol after optimization of formulation ingredients and lignin has been introduced and isocyanate content reduced in the green rigid PU foam. The cellulosic nanofibers have also been successfully incorporated and dispersed in green rigid PU foam to improve the rigidity. The influence of nano cellulose fiber modification (enzymatic treatment, hydrophobic modification with latex) on the foam density, open cell content, foam raise height, water vapor, and mechanical properties of rigid PU foam were studied. The foamed structures were examined using scanning electron microscopy to determine the cell size and shape due to the addition of cellulosic nanofibers. The odor test were performed to evaluate the odor concentration 100 % soyol based PU foam including lignin and nanofiber and compared to 100 % synthetic based polyol PU foam. The experimental results indicated that the compression and impact properties improved due to the modification of nano cellulosic fibers. The odor concentration level of nanofiber reinforced rigid PU foam reduced significantly compared to 100 % PU foam due to the replacing of isocyanate content. It can be said that with an appropriate combination of replacing isocyanate by lignin and addition of nanofiber, rigid PU foam properties could be improved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Banik I, Sain M (2008) J Reinf Plast Compos 27:1745

    CAS  Article  Google Scholar 

  2. 2.

    Banik I, Sain M (2008) J Reinf Plast Compos 27:1515

    CAS  Article  Google Scholar 

  3. 3.

    Banik I, Sain M (2008) J Reinf Plast Compos 27:357

    CAS  Article  Google Scholar 

  4. 4.

    Gu R, Sain M, Konar SK (2013) Ind Crops Prod 42:273

    CAS  Article  Google Scholar 

  5. 5.

    Gu R, Konar S, Sain M (2012) J Am Oil Chem Soc 89:2103

    CAS  Article  Google Scholar 

  6. 6.

    Khazabi M, Gu R, Sain M (2011) BioResources 6:3757

    CAS  Google Scholar 

  7. 7.

    Gu R, Khazabi M, Sain M (2011) BioResources 6:3775

    CAS  Google Scholar 

  8. 8.

    Mielewski D (2012) Greening and light-weighting automotive: Ford’s vision for a sustainable automotive industry, 12th international conference on biocomposites: transition to green materials, May 6–8, 2012 Niagara Falls, Ontario Canada

  9. 9.

    Lora JH (2008) In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, chapter 10. Elsevier, United kingdom, pp 225–242

    Google Scholar 

  10. 10.

    Ramesh NS, Rasmussen DH, Campbell GA (1994) Polym Eng Sci 34:1685

    CAS  Article  Google Scholar 

  11. 11.

    Antonietti M, Goltner C (1997) Angew Chem Int Ed Engl 36:36

    Google Scholar 

  12. 12.

    Schmid G (1994) Clusters and colloids. VCH, Weinheim

    Google Scholar 

  13. 13.

    Bledzki AK, Faruk O (2005) J Appl Polym Sci 97:1090

    CAS  Article  Google Scholar 

  14. 14.

    Bledzki AK, Faruk O (2006) Macromol Mater Eng 291:1226

    CAS  Article  Google Scholar 

  15. 15.

    Bledzki AK, Faruk O (2006) Compos Part A 37:1358

    Article  Google Scholar 

  16. 16.

    Luo X, Mohanty A, Misra M (2012) J Am Oil Chem Soc 89:2057

    CAS  Article  Google Scholar 

  17. 17.

    Silva MC, Takahashi JA, Chaussy D, Belgacem MN, Silva GG (2010) J Appl Polym Sci 117:3665

    CAS  Google Scholar 

  18. 18.

    Luo X, Mohanty A, Misra M (2013) Ind Crops Prod 47:13

    CAS  Article  Google Scholar 

  19. 19.

    Yeung P, Broutman LJ (1977) In: Proceedings of SPI, 32nd annual technical conference, Rein forced Plastics Division, Section 9-B

  20. 20.

    Bledzki AK, Faruk O (2005) J Cell Plast 41:539

    CAS  Article  Google Scholar 

  21. 21.

    Luo X, Mohanty A, Misra M (2013) Macromol Mater Eng 298:412

    CAS  Article  Google Scholar 

  22. 22.

    Harris SH, Kreter PE, Polley CW (1998) J Cell Plast 24:486

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the NSERC-Innovative Green Wood Fibre Products Network Grant for the financial support for this research work. The authors are grateful for the generous donation of materials provided by the manufacturers listed in the “Experimental” section.

Author information



Corresponding author

Correspondence to Omar Faruk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faruk, O., Sain, M., Farnood, R. et al. Development of Lignin and Nanocellulose Enhanced Bio PU Foams for Automotive Parts. J Polym Environ 22, 279–288 (2014).

Download citation


  • Soy based polyurethane foam
  • Isocyanate
  • Lignin
  • Cellulosic nanofiber