Journal of Polymers and the Environment

, Volume 22, Issue 2, pp 244–251 | Cite as

Optimization of Carbon Dioxide and Valeric Acid Utilization for Polyhydroxyalkanoates Synthesis by Cupriavidus necator

Original Paper

Abstract

The utilization of captured CO2 as a part of the CO2 capture and storage system to produce biopolymers could address current environmental issues such as global warming and depletion of resources. In this study, the effect of feeding strategies of CO2 and valeric acid on cell growth and synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in Cupriavidus necator was investigated to determine the optimal conditions for microbial growth and biopolymer accumulation. Among the studied CO2 concentrations (1–20 %), microbial growth and poly(3-hydroxybutyrate) accumulation were optimal at 1 % CO2 using a gas mixture at H2:O2:N2 = 7:1:91 % (v/v). When valeric acid was fed together with 1 % CO2, (R)-3-hydroxyvalerate synthesis increased with increasing valeric acid concentration up to 0.1 %, but (R)-3-hydroxybutyrate synthesis was inhibited at >0.05 % valeric acid. Sequential addition of valeric acid (0.05 % at Day 0 followed by 0.025 % at Day 2) showed an increase in 3HV fraction without inhibitory effects on 3HB synthesis during 4 d accumulation period. The resulting P(3HB-co-3HV) with 17–32 mol  % of 3HV is likely to be biocompatible. The optimal concentrations and feeding strategies of CO2 and valeric acid determined in this study for microbial P(3HB-co-3HV) synthesis can be used to produce biocompatible P(3HB-co-3HV).

Keywords

Carbon dioxide transformation Polyhydroxyalkanoates Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Cupriavidus necator Biocompatible plastics 

References

  1. 1.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21Google Scholar
  2. 2.
    Verlinden RAJ, Hill DJ, Kenward MA, Willians CD, Radecka I (2007) J Appl Microbiol 102:1437CrossRefGoogle Scholar
  3. 3.
    Ishizaki A, Tanaka K, Taga N (2001) Appl Microbiol Biotechnol 57:6CrossRefGoogle Scholar
  4. 4.
    Khanna S, Srivastava AK (2005) Process Biochem 40:607CrossRefGoogle Scholar
  5. 5.
    Hunt AJ, Sin EHK, Marriott R, Clark JH (2010) Chem Sus Chem 3:306CrossRefGoogle Scholar
  6. 6.
    Akaraonye E, Keshavarz T, Roy I (2010) J Chem Technol Biotechnol 85:732CrossRefGoogle Scholar
  7. 7.
    Chen GQ, Wu Q (2005) Biomaterials 26:6565CrossRefGoogle Scholar
  8. 8.
    Khanna S, Srivastava AK (2007) J Ind Microbiol Biotechnol 34:457CrossRefGoogle Scholar
  9. 9.
    Anderson AJ, Dawers EA (1990) Microbiol Rev 54:450Google Scholar
  10. 10.
    Ishizaki A, Tanaka K (1991) J Ferment Bioeng 71:254CrossRefGoogle Scholar
  11. 11.
    Tanaka K, Ishizaki A (1995) Biotechnol Bioeng 45:268CrossRefGoogle Scholar
  12. 12.
    Tanaka K, Ishizaki A (1994) J Ferment Bioeng 77:425CrossRefGoogle Scholar
  13. 13.
    Volova TG, Kalacheva GS, Gorbunova OV, Zhila NO (2004) Appl Biochem Microbiol 40:170CrossRefGoogle Scholar
  14. 14.
    Volova TG, Kalacheva GS (2005) Microbiology 74:54CrossRefGoogle Scholar
  15. 15.
    Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Bioresource Technol 146:215CrossRefGoogle Scholar
  16. 16.
    Volova TG, Kalacheva GS, Steinbuchel A (2008) Macromol Symp 269:1CrossRefGoogle Scholar
  17. 17.
    Werker A, Lind P, Bengtsson S, Nordstrom F (2008) Water Res 42:2517CrossRefGoogle Scholar
  18. 18.
    Jung YK, Kim TY, Park SJ, Lee SY (2010) Biotechnol Bioeng 105:161CrossRefGoogle Scholar
  19. 19.
    Gunarante L, Shanks R, Amarasinghe G (2004) Thermochim Acta 423:127CrossRefGoogle Scholar
  20. 20.
    Pedros-Alio C, Mas J, Guerrero R (1985) Arch Microbiol 143:178CrossRefGoogle Scholar
  21. 21.
    Byrom D (1987) Trends Biotechnol 5:246CrossRefGoogle Scholar
  22. 22.
    Pohlmann A (2006) Nat Biotechnol 24:1257CrossRefGoogle Scholar
  23. 23.
    Reinecke F, Steinbuchel A (2009) J Mol Microbiol Biotechnol 16:91CrossRefGoogle Scholar
  24. 24.
    Bongers L (1970) J Bacteriol 104:145Google Scholar
  25. 25.
    Dixon NM, Kell DB (1989) J Appl Bacteriol 67:109CrossRefGoogle Scholar
  26. 26.
    Shang L, Jiang M, Ryu CH, Chang HN, Cho SH, Lee JW (2003) Biotechnol Bioeng 83:312CrossRefGoogle Scholar
  27. 27.
    Shang L, Yim SC, Park HG, Chang HN (2004) Biotechnol Prog 20:140CrossRefGoogle Scholar
  28. 28.
    Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Enzyme Microb Technol 16:556CrossRefGoogle Scholar
  29. 29.
    Du GC, Chen J, Yu J, Lun S (2001) Biochem Eng J 8:103CrossRefGoogle Scholar
  30. 30.
    Kim DY, Park DS, Kwon SB, Chung MG, Bae KS, Park HY, Rhee YH (2009) J Microbiol 47:651CrossRefGoogle Scholar
  31. 31.
    Volova TG (2004) Polyhydroxyalkanoates-plastic materials of the 21st century: production, properties, applications. Nova Science Publishers, New YorkGoogle Scholar
  32. 32.
    Scandola M, Pizzoli M, Ceccorulli G, Cesàro A, Paolletti S, Navarini L (1988) Int Biol Macromol 10:373CrossRefGoogle Scholar
  33. 33.
    Cesaro A, Scandola M (1989) Chimicaoggi 7:81Google Scholar
  34. 34.
    Mitomo H, Barham PJ, Keller A (1987) Polym J 19:1241CrossRefGoogle Scholar
  35. 35.
    Madden LA, Anderson JA (1998) Macromolecules 31:5660CrossRefGoogle Scholar
  36. 36.
    Doi Y (1990) Microbial polyesters. VCH, New YorkGoogle Scholar
  37. 37.
    Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O (2003) Biochem Eng J 16:125CrossRefGoogle Scholar
  38. 38.
    Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA (2004) J Mater Sci Mater Med 15:719CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringSeoul National UniversityGwanak-gu, SeoulKorea

Personalised recommendations