Skip to main content
Log in

Biodegradation Behaviors of Poly(p-dioxanone) in Different Environment Media

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work was aimed at researching the aerobic biodegradation of poly(p-dioxanone) (PPDO), a novel kind of degradable polymer material, by simulating real-life conditions in a laboratory-scale test, specified by the standard methods based on two biodegradation environments, composting and aqueous media. To measure and describe the biodegradability of PPDO, not only had carbon dioxide produced by respiratory metabolism of microorganism been measured, which determines the ultimate aerobic biodegradability of chemical compounds, but also the detailed results of biodegradation were further characterized by monitoring physical, chemical and thermal properties changes of test materials at different incubation times in the two media, confirmed by using the appropriate analytical techniques. Scanning electron microscopy was used to observe the surface morphology, and the thermal performance of PPDO was characterized by differential scanning calorimetry. The changes of molecular weight were detected by intrinsic viscosity ([η]) and gel permeation chromatography, and the variations of the molecular structure were monitored by the nuclear magnetic resonance and FT-IR. The results show that PPDO has outstanding character of biodegradation and may be more adapted for biodegrading in liquid medium than in composting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym Degrad Stab 91(3):620–627

    Article  CAS  Google Scholar 

  2. Mohee R, Unmar GD, Mudhoo A, Khadoo P (2008) Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manage (Oxford) 28(95):1624–1629

    Article  CAS  Google Scholar 

  3. Andrady AL (1994) Assessment of environmental biodegradation of synthetic polymers. J Macromol Sci Rev Macromol Chem Phys C34(1):25–76

    Article  CAS  Google Scholar 

  4. Chiellini E, Corti A (2003) A simple method suitable to test the ultimate biodegradability of environmentally degradable polymers. Macromol Symp 197:381–395

    Article  CAS  Google Scholar 

  5. Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Standardization and certification in the area of environmentally degradable plastics. Polym Degrad Stab 91(12):2819–2833

    Article  CAS  Google Scholar 

  6. Luckachan GE, Pillai CKS (2012) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  Google Scholar 

  7. Aamer AS, Fariha H, Abdul H, Safia A (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265

    Article  Google Scholar 

  8. Masahiko O (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  Google Scholar 

  9. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  10. Yan LD, Yu C, Fang L, Fang L, Yi C (2008) Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polym Testing 27(8):924–930

    Article  Google Scholar 

  11. Shogren RL, Doane WM, Garlotta D, Lawton JW, Willett JL (2003) Biodegradation of starch/polylactic acid/poly (hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79(3):405–411

    Article  CAS  Google Scholar 

  12. Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12(3):242–247

    Article  CAS  Google Scholar 

  13. Belloncle B, Bunel C, Menu-Bouaouiche L (2012) Study of the degradation of poly(ethyl glyoxylate): biodegradation, toxicity and ecotoxicity assays. J Polym Environ 20(3):726–731

    Article  CAS  Google Scholar 

  14. Kim MN, Lee A, Lee K, Chin I, Yoon J (1999) Biodegradability of poly(3-hydroxybutyrate) blended with poly(ethylene-co-vinyl acetate). Eur Polym J 35(6):1153–1158

    Article  CAS  Google Scholar 

  15. Fernanda H, dos Santos Rosa D, Denise ML (2012) Biodegradable polyester-based blend reinforced with Curauá fiber: thermal, mechanical and biodegradation behaviour. J Polym Environ 20(1):237–244

    Article  Google Scholar 

  16. Zoubida S, Aurore R, Guy C, Hilaire B, Ludovic B (2012) Fungal degradation of poly(l-lactide) in soil and in compost. J Polym Environ 20(2):273–282

    Google Scholar 

  17. Yang KK, Li XL, Wang YZ (2002) Poly(p-dioxanone) and its copolymers. J Macromol Sci Polym Rev 42(3):373–398

    Article  Google Scholar 

  18. Wang XL, Yang KK, Wang YZ, Wang DY, Yang Z (2004) Crystallization and morphology of a novel biodegradable polymer system: poly(1,4-dioxan-2-one)/starch blends. Acta Mater 52(16):4899–4905

    Article  CAS  Google Scholar 

  19. Wang XL, Yang KK, Wang YZ (2003) Properties of starch blends with biodegradable polymers. J Macromol Sci Polym Rev 43(3):385–409

    Article  CAS  Google Scholar 

  20. Wang XL, Ying L, Li B, Wang YZ (2012) Rapid synthesis of poly(p-dioxanone)/montmorillonite nanocomposites under microwave irradiation. J Appl Polym Sci 125(5):3463–3468

    Article  CAS  Google Scholar 

  21. Zeng JB, Srinivansan M, Li SL (2011) Nonisothermal and isothermal cold crystallization behaviors of biodegradable poly(p-dioxanone). Ind Eng Chem Res 50(8):4471–4477

    Article  CAS  Google Scholar 

  22. Qiu ZC, Zhang JJ, Niu Y (2011) Preparation of poly(p-dioxanone)/sepiolite nanocomposites with excellent strength/toughness balance via surface-Initiated polymerization. Ind Eng Chem Res 50(17):10006–10016

    Article  CAS  Google Scholar 

  23. Wei B, Li F, Zhang QL, Dong LC, Cheng DX (2010) In vitro hydrolytic degradation of poly(para-dioxanone)/poly(d,l-lactide) blends. Mater Chem Phys 22(1):79–86

    Google Scholar 

  24. Parandoosh S, Hudson SM (1993) The acetylation and enzymatic degradation of starch films. J Appl Polym Sci 48(5):787–791

    Article  CAS  Google Scholar 

  25. Baljit S (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93(3):561–584

    Article  Google Scholar 

  26. Pagga U (1997) Testing biodegradability with standardized methods. Chemosphere 35(12):2953–2972

    Article  CAS  Google Scholar 

  27. Richard G, Alain C, Céline B, Yves C (2002) Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media. Int Biodeterior Biodegradation 50(1):25–31

    Article  Google Scholar 

  28. Pagga U, Beimborn DB, Boelens J, deWilde B (1995) Determination of the biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere 31(11–12):4475–4487

    Article  CAS  Google Scholar 

  29. Andreas S, Michael M (1996) Assessment of biodegradability of plastics under simulated composting conditions in a laboratory test system. Int Biodeterior Biodegradation 37(1–2):85–92

    Google Scholar 

  30. ISO14855 (1999) Determination of the ultimate aerobic biodegradability and disintegration of plastic materials under controlled composting conditions—method by analysis of evolved carbon dioxide

  31. ISO14852 (1999) Determination of the ultimate aerobic biodegradability and disintegration of plastic materials in an aqueous medium—method by analysis of evolved carbon dioxide

  32. Hamid SH, Amin MB, Maadhah AG (1992) Handbook of polymer degradation. Marcel Dekker, New York, p 55

    Google Scholar 

  33. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  34. Grima S, Maurel VB, Feuilloley P, Silvestre F (2000) Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. J Polym Environ 8:183–195

    Article  CAS  Google Scholar 

  35. Swift G (1995) Opportunities for environmentally degradable polymers. J Macromol Sci Pure Appl Chem 32:641–651

    Article  Google Scholar 

  36. Rivard C, Moens L, Roberts K, Brigham J, Kelley S (1995) Starch esters as biodegradable plastics: effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme Microb Technol 17(9):848–852

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT 1026), National Natural Science Foundation of China (51121001) and High-Tech Research & Development Program (2012AA062904). And thanks are addressed to Analytical & Testing Center of Sichuan University for NMR testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Liang, B., Li, J. et al. Biodegradation Behaviors of Poly(p-dioxanone) in Different Environment Media. J Polym Environ 21, 1088–1099 (2013). https://doi.org/10.1007/s10924-013-0613-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0613-z

Keywords

Navigation