Skip to main content

Advertisement

Log in

Thermoplastic Protein Nano-Composites Using Bloodmeal and Bentonite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bloodmeal is a low value meat industry product and can be converted into a thermoplastic material. These novel thermoplastics often have inferior mechanical properties and require some degree of reinforcement. Reinforcement using octadecylamine (OAmine) modified bentonite have shown an increase in tensile strength from 7.69 to 9.26 MPa by using 2 parts clay per hundred parts bloodmeal. Unmodified clay did not lead to the same increase in strength. High shear during extrusion was not sufficient to prevent agglomeration at higher clay content leading to modified clay composites showing reduced tensile strength. Particle size of unmodified clay composites was small enough to lead to dispersion reinforcement, whereas modified clay composites showed even greater agglomeration, leading to a decrease in strength. It was concluded that the physical nature of the thermoplastic protein requires careful consideration as to the level of clay modification required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75:1–9

    Article  CAS  Google Scholar 

  2. Guilbert S, Morel MH, Gontard N, Cuq B (2006) Protein-based plastics and composites as smart green materials. In: Bozell JJ, Patel MK (eds) Feedstocks for the future: renewables for the production of chemicals and materials. American Chemical Society, Washington

  3. Verbeek CJR, van den Berg LE (2011) Development of proteinous bioplastics using bloodmeal. J Polym Environ 19:1–10

    Article  CAS  Google Scholar 

  4. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    Article  CAS  Google Scholar 

  5. Yang KK, Wang XL, Wang YZ (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500

    CAS  Google Scholar 

  6. Zhao RX, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071

    Article  CAS  Google Scholar 

  7. Chen P, Zhang L (2006) Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules 7:1700–1706

    Article  CAS  Google Scholar 

  8. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29

    Article  CAS  Google Scholar 

  9. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5:1574–1592

    Article  CAS  Google Scholar 

  10. Verbeek CJR, van den Berg LE (2009) Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng 295:10–21

    Article  Google Scholar 

  11. Le Pluart L, Duchet J, Sautereau H, Gerard JF (2002) Surface modifications of montmorillonite for tailored interfaces in nanocomposites. J Adh 78:645–662

    Article  Google Scholar 

  12. Lin JJ, Cheng IJ, Wang RC, Lee RJ (2001) Tailoring basal spacings of montmorillonite by poly(oxyalkylene)diamine intercalation. Macromolecules 34:8832–8834

    Article  CAS  Google Scholar 

  13. Tiwari RR, Khilar KC, Natarajan U (2008) Synthesis and characterization of novel organo-montmorillonites. Appl Clay Sci 38:203–208

    Article  CAS  Google Scholar 

  14. Yoon KB, Sung HD, Hwang YY, Noh SK, Lee DH (2007) Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation. Appl Clay Sci 38:1–8

    Article  CAS  Google Scholar 

  15. Utracki LA, Kamal MR (2002) Clay-containing polymeric nanocomposites. Arab J Sci Eng 27:43–67

    CAS  Google Scholar 

  16. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW (2001) Nanocomposites: the importance of processing. Plast Eng 57:56

    CAS  Google Scholar 

  17. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42:9513–9522

    Article  CAS  Google Scholar 

  18. Okada K, Mitsunaga T, Nagase Y (2003) Properties and particles dispersion of biodegradable resin/clay nanocomposites. Korea Aust Rheol J 15:43–50

    Google Scholar 

  19. Zhu LJ, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891–1899

    Article  CAS  Google Scholar 

  20. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  21. Verbeek CJR, Viljoen, C, Pickering, KL, van den Berg, LE (2009) Plastics material, WAIKATOLINK LIMITED. Level 1, core facilities building, Waikato innovation park, Ruakura road, Hamilton, New Zealand, New Zealand

  22. Godavarti S, Karwe MV (1997) Determination of specific mechanical energy distribution on a twin-screw extruder. J Agric Eng Res 67:277–287

    Article  Google Scholar 

  23. Verbeek CJR, Koppel NJ (2012) Moisture sorption and plasticization of bloodmeal-based thermoplastics. J Mater Sci 47(3):1187–1195

    Google Scholar 

  24. Verbeek J, Christopher M (2012) Mica-reinforced polymer composites in polymer composites. Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. R. Verbeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, C.J.R., Klunker, E. Thermoplastic Protein Nano-Composites Using Bloodmeal and Bentonite. J Polym Environ 21, 963–970 (2013). https://doi.org/10.1007/s10924-013-0610-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0610-2

Keywords

Navigation