Skip to main content
Log in

Characterization of Degradation of Cotton Cellulosic Fibers Through Near Infrared Spectroscopy

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Near infrared (NIR) spectroscopy has been found to be one of the most important characterization tools for polymeric materials based on comparatively simple NIR-favorable chemical groups (i.e., C–H, O–H, and N–H). This paper focuses on characterizing degradation of cotton cellulosic fibers in a historical textile—‘Curtain Dress’ in the famous movie Gone With the Wind through NIR spectroscopy, and investigating morphological and molecular changes associated with appearance change such as discolorations in the same cotton textiles. In this study, we did on-site testing on the ‘Curtain Dress’ with the Brimrose Luminar 5030 NIR-analyzer and analyzed the NIR spectroscopy results at eight locations where different degrees of discoloration occurred on the dress. The study identified the wavelength bands according to NIR spectral absorbancies of the typical functional groups in cellulosic fibers such as C–H, C–O and O–H stretches, compared the absorbance intensities at three main wavelengths, and investigated discoloration in different areas via principal component analysis. The combination factor scores of the 1st and 2nd principal components, which accounted for 99.09 % variance of vibrations within various groups in a molecule measured through NIR, reflected effectively morphological changes in the fiber’s molecular structure and degrees of discolorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rodgers J, Beck K (2009) Text Res J 79(8):657–686

    Article  Google Scholar 

  2. Burns DA, Ciurczak EW (2007) Handbook of near- infrared analysis, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  3. Siesler HW, Ozaki Y, Kawata S, Heise HM (2002) Near-infrared spectroscopy principles, instruments, applications, 1st edn. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  4. Brown WH, Foote CS, Iverson BL, Anslyn E (2012) Organic chemistry. Brooks/Cole, Cengage Learning, Belmont

    Google Scholar 

  5. Nuance Center, N.U. (2010) What is diffuse reflectance spectroscopy? Retrieved February 12, 2012, from NUANCE: Northwestern University Atomic—and Nanoscale Characterization Experimental Center Web site: http://www.nuance.northwestern.edu/KeckII/Instruments/FT-IR/index.html#FourierTransformInfraredSpectroscopy(FT-IR)

  6. Brenchley JM, Hörchner U, Kalivas JH (1997) Appl Spectrosc 51(5):689–699

    Article  CAS  Google Scholar 

  7. Adar F (2012) Analytical vibration spectroscopy—NIR, IR, and Raman, Retrieved April 4, 2012, from http://www.spectroscopyonline.com/spectroscopy/article/articleDetail.jsp?id=745425

  8. Kadolph SJ (2007) Textiles, 10th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  9. Boersma F, Brokerhof A, van den Berg S, Tegelaers J (2007) Unravelling textiles. Archetype Publications Ltd, London

    Google Scholar 

  10. Liu YL, Kokot S, Sambi TJ (1998) Analyst 123:1725–1728

    Article  CAS  Google Scholar 

  11. Schwaninger M, Rodrigues JC, Fackler K (2011) J Near Infrared Spectrosc 19:287–308

    Article  Google Scholar 

  12. Wust E, Rudzik L (1996) In: Gunzler AMBH, Borsdorf R, Danzer K, Fresenius W, Galensa R, Huber W, Luderwald I, Schwedt G, Tolg G, Wisser H (eds) Highlight ausdem Analytiker-Taschenbuch, Infrarotspektroskopie. Springer, Berlin, p 221

    Google Scholar 

  13. Ali M, Emsley AM, Herman H, Heywood RJ (2001) Polymer 42:2893–2900

    Article  CAS  Google Scholar 

  14. Facklera K, Schwanninger M (2010) J Near Infrared Spectrosc 18(6):403–416

    Article  Google Scholar 

  15. Barton FE, Himmelsbach DS (1993) Appl Spectrosc 47(11):1920–1925

    Article  CAS  Google Scholar 

  16. Tsuchikawa S, Siesler HW (2003) Appl Spectrosc 57(6):667–674

    Article  CAS  Google Scholar 

  17. Fujimoto T, Yamamoto H, Tsuchikawa S (2007) Appl Spectrosc 61(8):882

    Article  CAS  Google Scholar 

  18. Watanabe A, Morita S, Ozaki Y (2006) Appl Spectrosc 60(6):611–618

    Article  CAS  Google Scholar 

  19. Yonenobu H, Tsuchikawa S (2003) Appl Spectrosc 57(11):1451

    Article  CAS  Google Scholar 

  20. Thygesen LG, Lundqvist SO (2000) J Near Infrared Spectrosc 8(3):183

    Article  CAS  Google Scholar 

  21. Shenk JS, Workman JJ, Westerhaus MO (2001) In: Burns DA, Ciurczak EW (eds) Handbook of near-infrared analysis. Dekker Inc, New York, p 419

    Google Scholar 

  22. Osborne BG, Fearn T (1998) Near infrared spectroscopy in food analysis. Longman Scientific & Technical, Harlow

    Google Scholar 

  23. Tsuchikawa S, Yamamoto H, Siesler HW (2005) Analyst 130(3):379

    Article  CAS  Google Scholar 

  24. Abney C, Festing LC (1881) Philos Trans Royal Soc 172:887

    Article  Google Scholar 

  25. Workman J, Weyer L (2007) Practical guide to interpretive near-infrared spectroscopy, 1st edn. CRC press, Boca Raton

    Google Scholar 

  26. Schimleck LR, Evans R (2004) Holzforschung 58(1):66–73

    Article  CAS  Google Scholar 

  27. Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton

    Google Scholar 

  28. Joseph WE, Bath J (1940) J Am Chem Soc 62(10):2859–2861

    Article  Google Scholar 

  29. J. Yan, N. Villarreal, C. K. Jay and B. Xu (2013) AATCC Rev (in press)

Download references

Acknowledgments

The authors wish to gratefully acknowledge the outstanding support of the staff at the Harry Ransom Center at the University of Texas at Austin, in particular Steve Wilson, Curator of Film, and Jill Morena, Assistant Curator of Costumes and Personal Effects, for giving them access to the ‘Curtain Dress.’ They would also like to thank Dr. Cynthia K. Jay from the ‘Historical Textile and Apparel Collection’ at the School for Human Ecology at the University of Texas at Austin for providing cotton samples for comparison testing. Finally, they wish to acknowledge Maggie Houdman and Xiaowen Guo for their assistance with the on site testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bugao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Villarreal, N. & Xu, B. Characterization of Degradation of Cotton Cellulosic Fibers Through Near Infrared Spectroscopy. J Polym Environ 21, 902–909 (2013). https://doi.org/10.1007/s10924-013-0605-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0605-z

Keywords

Navigation