Skip to main content
Log in

PLA and Organoclays Nanocomposites: Degradation Process and Evaluation of ecotoxicity Using Allium cepa as Test Organism

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Polym Degrad Stab 80:403

    Article  CAS  Google Scholar 

  2. Rasal RM, Janorkar AV, Hirt DE (2010) Prog Polym Sci 35:338

    Article  CAS  Google Scholar 

  3. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820

    Article  CAS  Google Scholar 

  4. Yang K, Wang X, Wang Y (2007) J Ind Eng Chem 13:485

    CAS  Google Scholar 

  5. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) Chem Mater 14:4654

    Article  CAS  Google Scholar 

  6. Chang JH, Na YU, Sur GS (2003) J Polym Sci, Part B: Polym Phys 41:94

    Article  CAS  Google Scholar 

  7. Ray SS, Okamoto M (2003) Macromol Rapid Commun 24:815

    Article  CAS  Google Scholar 

  8. Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrel R, D’Souza NA, Ratto JA (2005) Polymer 46:11716

    Article  CAS  Google Scholar 

  9. Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Desalination 233:201

    Article  CAS  Google Scholar 

  10. Chowdhury SR (2008) Polym Int 57:1326

    Article  CAS  Google Scholar 

  11. Rhim JW, Hong SI, Ha CS (2009) LWT Food Sci Technol 42:612

    Article  CAS  Google Scholar 

  12. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2011) J Appl Polym Sci 122:112

    Article  CAS  Google Scholar 

  13. Morales AR, Cruz CVM, Peres L (2010) Polim Cienc Tecnol 20:39

    Article  CAS  Google Scholar 

  14. CEMPRE-COMPROMISSO EMPRESARIAL PARA RECICLAGEM (1995) Lixo municipal: manual de gerenciamento integrado. IPT, São Paulo

    Google Scholar 

  15. Mei LHI, Mariani PDSC (2005) Visão geral sobre polímeros ou plásticos ambientalmente degradáveis (PADs). Editora e Gráfica Flamboyant, Campinas

    Google Scholar 

  16. ASTM D6400-12 (2012) Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities

  17. Kale G, Auras R, Singh SP, Narayan R (2007) Polym Test 26:1049

    Article  CAS  Google Scholar 

  18. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Macromol Biosci 7:255

    Article  CAS  Google Scholar 

  19. Weir NA, Buchanan FJ, Orr JF, Farrar DF, Dickson GR (2004) Proc Inst Mech Eng Part H 218:321

    Article  CAS  Google Scholar 

  20. Kijchavengkul T, Auras R (2008) Polym Int 57:793

    Article  CAS  Google Scholar 

  21. Chandra T, Rustgi R (1998) Prog Polym Sci 23:1273

    Article  CAS  Google Scholar 

  22. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Polym Degrad Stab 94:1646

    Article  CAS  Google Scholar 

  23. Fukushima K, Tabuani D, Camin G (2009) Mater Sci Eng, C 29:1433

    Article  CAS  Google Scholar 

  24. Ozkoc G, Sebnem K (2009) J Appl Polym Sci 144:2481

    Article  Google Scholar 

  25. Fukushima K, Giménez E, Cabedo L, Lagarón JM, Feijoo JL (2012) Polym Deg Stab 97:1278

    Article  CAS  Google Scholar 

  26. Ray SS, Yamada K, Okamoto M, Ueda K (2003) Polymer 44:857

    Article  Google Scholar 

  27. Souza PMS, Morales AR, Marin-Morales MA, Mei LHI (2013) J Polym Environ (accepted)

  28. Southern Clay Material safety data sheet (2013) Available at http://www.scprod.com/nafta/index.html. Access date 29 Jan 2013

  29. Adams SM (2002) Biological indicators of aquatic ecosystem stress. American Fisheries Society, Bethesda

    Google Scholar 

  30. Walker CM, Hopkin SP, Sibly RM, Peakall DB (1996) Principles of ecotoxicology. Taylor & Francis, Bristol

    Google Scholar 

  31. Leme M, Marin-Morales MA (2009) Mutat Res 682:71

    Article  CAS  Google Scholar 

  32. Cabrera GL, Rodriguez DMG (1999) Mutat Res 426:211

    Article  CAS  Google Scholar 

  33. Smaka-Kincly V, Stegnar P, Lovka M, Toman MJ (1996) Mutat Res 368:171

    Article  Google Scholar 

  34. Caritá R, Marin-Morales MA (2008) Chemosphere 72:722

    Article  Google Scholar 

  35. Hoshina MM, Marin-Morales MA (2009) Ecotoxicol Environ Saf 72:2090

    Article  CAS  Google Scholar 

  36. Bianchi J, Espindola ELG, Marin-Morales MA (2011) Ecotoxicol Environ 74:826

    Article  CAS  Google Scholar 

  37. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Pest Biochem Physiol 88:252

    Article  CAS  Google Scholar 

  38. Mazzeo DEC, Fernandes TCC, Marin-Morales MA (2011) Chemosphere 85:13

    Article  CAS  Google Scholar 

  39. Ribeiro LR (2003) In: Ribeiro LR, Salvadori DMF, Marques EK (eds) Mutagênese Ambiental. Ulbra, Canoas

  40. Serres FJ (1978) Environ Health Perspect 27:3

    Article  Google Scholar 

  41. Fiskejö G (1985) Hereditas 102:99

    Article  Google Scholar 

  42. Fenech M (2000) Mutat Res 455:81

    Article  CAS  Google Scholar 

  43. Albertini RJ, Anderson D, Douglas D, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DEG, Tice R, Waters MD, Aitio A (2000) Mutat Res 463:111

    Article  CAS  Google Scholar 

  44. MAPA—Ministério da Agricultura, Pecuária e Abastecimento (2007) Instrução Normativa No. 28: Manual de Métodos Analíticos Oficiais para Fertilizantes Minerais, Orgânicos, Organominerais e Corretivos

  45. Sonneveld C, Ende J, Dijk PA (1974) Commun Soil Sci Plant Anal 5:183

    Article  CAS  Google Scholar 

  46. ABNT—Associação Brasilera de Normas Técnicas (2004) NBR 10.006: Procedimento para obtenção de extrato solubilizado de resíduos sólidos. ABNT, Rio de Janeiro

  47. Rank J, Nielsen MH (1997) Mutat Res 390:121

    Article  CAS  Google Scholar 

  48. Grant WF (1982) Mutat Res 99:273

    Article  CAS  Google Scholar 

  49. Paiva LB, Morales AR, Branciforti MC, Bretas RS (2012) Braz J Chem Eng 29:751

    Article  CAS  Google Scholar 

  50. Souza PMS, Morales AR, Marin-Morales MA, Mei LHI (2013) Polim: Cienc Tecnol (accepted)

  51. Zeng QH, Yu AB, Lu GQM, Paul DR (2005) J Nanosci Nanotechnol 5:1574

    Article  CAS  Google Scholar 

  52. Zenkiewicz M, Malinowski R, Rytlewski P, Richert A, Sikorska W, Krasowska K (2012) Polym Test 31:83

    Article  CAS  Google Scholar 

  53. González, Dasari A, Herrero B, Plancher E, Santarén J, Esteban A, Lim S (2012) Polym Degrad Stab 97:248

  54. Chu C (1985) Polymer 26:591

    Article  CAS  Google Scholar 

  55. Södergard A, Stolt M (2002) Prog Polym Sci 27:1123

    Article  Google Scholar 

  56. Ojijo V, Ray SS Polym Sci (accepted in Prog)

  57. Lucas EF, Soares BG, Monteiro E (2001) Caracterização de Polímeros: Determinação de Peso Molecular e Análise Térmica. e-papers, Rio de Janeiro

  58. Paul MA, Delcourt C, Alexandre M, Degée Ph, Monteverde F, Dubois Ph (2005) Polym Degrad Stab 87:535

    Article  CAS  Google Scholar 

  59. Almeida FS (1985) Guia de herbicidas, recomendações para o uso adequado e plantio direto e convencional. IAPAR, Londrina

    Google Scholar 

  60. Mazzeo DEC, Levy CE, Angelis DF, Marin-Morales MA (2010) Sci Total Environ 408:4334

    Article  CAS  Google Scholar 

  61. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2009) Ecotoxicol Environ Saf 72:1680

    Article  CAS  Google Scholar 

  62. Rank J, Nielsen MH (1998) Mutat Res 418:113

    Article  CAS  Google Scholar 

  63. Mitelut C, Popa ME (2011) Rom Biotechnol Lett 16:121

    CAS  Google Scholar 

  64. Gariglio NF, Buyati MA, Pilatti RA, Russia DEG, Acosta MR (2002) NZJ Crop Hortic Sci 30:135

    Google Scholar 

  65. Rudeekit Y, Siriyota P, Intaraksa P, Chaiwutthinan P (2012) Adv Mater Res 506:323

    Article  CAS  Google Scholar 

  66. OECD 208 (2006) Terrestrial plant test: seedling emergence and seedling growth test

Download references

Acknowledgments

The authors are grateful to FAPESP (process number 2011/14250-3 and 2012/00227-2) and CNPq by the financial support, to Laboratory of Polymer Blends and Conductive Composites conductors (UFRJ, Rio de Janeiro, Brazil) by the GPC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rita Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, P.M.S., Corroqué, N.A., Morales, A.R. et al. PLA and Organoclays Nanocomposites: Degradation Process and Evaluation of ecotoxicity Using Allium cepa as Test Organism. J Polym Environ 21, 1052–1063 (2013). https://doi.org/10.1007/s10924-013-0604-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0604-0

Keywords

Navigation