Skip to main content
Log in

Kinetic Behavior in Melt State and Solid State Polymerization of Lactide Using Magnesium Stearate as Catalyst

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Solid state polymerizations (SSP) and the kinetic behavior in melt state of l-lactide polymerizations employing magnesium stearate as catalyst were investigated. The solid state polymerizations were carried out in two steps where pre-polymers were first prepared in melt polymerizations at 180 °C and the subsequent post-polymerizations were performed around the Tc of polylactide (PLA). In order to find the initial SSP conditions, kinetic profiles of melt polymerizations of l-lactide with magnesium stearate were determined. According to the kinetics data the melt polymerizations were found to be first order with respect to lactide as evident from a linear relationship of logarithmic variations of l-lactide concentration versus time using catalyst/monomer ratios of 1:500 and 1:5,000. When the catalyst content is increased to 1:100 the relationship loses its linearity due to fast propagation in the early stages of the reaction. From the GPC data it can be noted that the molecular weight of PLA can be increased by 5–17 times under the conditions established for our SSP experiments. A comparison between the two step solid state polymerizations and already reported melt polymerizations using the same catalyst showed that SSP furnished polymers with much lower amount of polymer degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Gironi F, Piemonte G (2011) Environ Prog Sustain Energy 30(3):459–468

    Article  CAS  Google Scholar 

  2. Patel M, Bastioli C, Marini L, Würdinger E (2005) Biopolymers Online ed. Wiley-VCH Verlag GmbH & Co

  3. Laine P, Kontio R, Lindqvist C, Suuronen R (2004) Int J Oral Maxillofac Surg 33:240–244

    Article  CAS  Google Scholar 

  4. Liang LS, Wong W, Burt HM (2005) J Pharm Sci 94:1204–1215

    Article  CAS  Google Scholar 

  5. Schmidmaier G, Wildemann B, Stemberger A, Haas NP, Raschke M (2001) J Biomed Mater Res 58:449–455

    Article  CAS  Google Scholar 

  6. Yu Y, Storti G, Morbidelli M (2011) Ind Eng Chem Res 50:7927–7940

    Article  CAS  Google Scholar 

  7. Kricheldorf HR, Hachmann-Thiessen H, Schwarz G (2004) Biomacromolecules 5:492–496

    Article  CAS  Google Scholar 

  8. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104(12):6147–6176

    Article  CAS  Google Scholar 

  9. Wheaton CA, Hayes PG, Ireland BJ (2009) Dalton Trans 25:4832–4846

    Google Scholar 

  10. Dobrzynski P, Kasperczyk J, Janeczek H, Bero M (2002) Polymer 43:2595–2601

    Article  CAS  Google Scholar 

  11. Dias ML, Palermo LC, Silvino AC (2011) Macromol Symp 299–300:156–163

    Article  Google Scholar 

  12. Kricheldorf HR, Serra A (1985) Polym Bull 14:497–502

    Article  CAS  Google Scholar 

  13. FDA’s SCOGS Database (1979) Report No. 60; ID Code: 557-04-0

  14. Sworbrick J, Boylan JC (1995) Encyclopedia of pharmaceutical technology, vol 12. Marcel Dekker, New York, pp 81–103

  15. Katiyar V, Shaama MS, Nanavati H (2011) J Appl Polym Sci 122:2966–2980

    Article  CAS  Google Scholar 

  16. Hermans PH, Weidinger A (1961) Macromol Chem 44:24–36

    Article  Google Scholar 

  17. Savitzky A, Golay MJE (1964) Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  18. Wojdyr MJ (2010) Appl Cryst 43:1126

    Article  CAS  Google Scholar 

  19. Shyamroy S, Garnaik B, Sivaran S (2005) J Polym Sci Polym Chem 43:2164

    Article  CAS  Google Scholar 

  20. Chrisholm MH, Eilerts NW, Huffman JC, Iyer SS, Pacold M, Phomphrai K (2000) J Am Chem Soc 122:11845

    Article  Google Scholar 

  21. Stridsberg KM, Ryner M, Albertsson A-C (2002) Adv Polym Sci 157:42–65

    Google Scholar 

  22. Zhong Z, Schneiderbauer S, Dijkstra PJ, Westerhausen M, Feijen J (2002) J Polym Environ 9:31–38

    Article  Google Scholar 

  23. Nijenhuis AJ, Grijpma DW, Pennings AJ (1992) Macromolecules 25:6414

    Article  Google Scholar 

  24. Katiyar V, Nanavati H (2011) Polym Eng Sci 51(10):2078–2084

    Article  CAS  Google Scholar 

  25. Shinno K, Miyamoto M, Kimura Y (1997) Macromolecules 30:6438–6444

    Article  CAS  Google Scholar 

  26. Auras R, Lim L-T, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New Jersey

    Book  Google Scholar 

  27. Degée P, Dubois P, Jérôme R (1997) Macromol Chem Phys 198:1985–1995

    Article  Google Scholar 

  28. Fan Y, Nishida H, Shirai Y, Endo T (2003) Polym Degrad Stab 80:503–511

    Article  CAS  Google Scholar 

  29. Noda M, Okuyama H (1999) Chem Pharm Bull 47:467–471

    Article  CAS  Google Scholar 

  30. Södergards A, Näsman JH (1996) Ind Eng Chem Res 35:732–735

    Article  Google Scholar 

  31. Kowalski A, Duda A, Penczek S (2000) Macromolecules 33:7359–7370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Carneiro Silvino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvino, A.C., de Abreu Talina Martins, D.B., da Costa Rodrigues, A. et al. Kinetic Behavior in Melt State and Solid State Polymerization of Lactide Using Magnesium Stearate as Catalyst. J Polym Environ 21, 1002–1008 (2013). https://doi.org/10.1007/s10924-013-0603-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0603-1

Keywords

Navigation