Advertisement

Journal of Polymers and the Environment

, Volume 21, Issue 3, pp 874–880 | Cite as

The Biodegradation of Latex Rubber: A Minireview

  • M. D. ChengalroyenEmail author
  • E. R. Dabbs
Review

Abstract

Natural rubber is used for the production of adhesives, latex gloves, tubing and tires. This widespread use is accompanied with an extensive generation of waste rubber material. In many parts of the world, especially industrialized countries, this has prompted legislation to be passed to govern the proper disposal of rubber waste. Even so, the recycling of this polymer is not widely practiced. This review looks at the useful bacteria capable of degrading this recalcitrant polymer. Furthermore we review the mechanism of action and the identification of rubber degrading genes. Clearly, a deep understanding of this biodegradative process at the biochemical and genetic level exists and should prompt the instigation of this knowledge in biotechnological applications.

Keywords

Rubber Latex Biodegradation Actinomycetes 

Supplementary material

10924_2013_593_MOESM1_ESM.docx (305 kb)
Supplementary material 1 (DOCX 305 kb)

References

  1. 1.
    Jendrossek D, Tomasi G, Kroppenstedt RM (1997) FEMS Microbiol Lett 150:179–188CrossRefGoogle Scholar
  2. 2.
    Mooibroek H, Cornish K (2000) Appl Microbiol Biotechnol 53:355–365CrossRefGoogle Scholar
  3. 3.
    Bode HB, Kerkhoff K, Jendrossek D (2001) Biomacromolecules 2:295–303CrossRefGoogle Scholar
  4. 4.
    Othmer K (1997) Encyclopaedia of chemical technology—Recycling oil to silicon vol. 21 (4th edn). John Wiley and Sons IncGoogle Scholar
  5. 5.
    Berekaa MM, Linos A, Reichelt R, Keller U, Steinbüchel A (2000) FEMS Microbiol Lett 184:199–206CrossRefGoogle Scholar
  6. 6.
    Braaz R, Armbruster W, Jendrossek D (2005) Appl Environ Microbiol 71:2473–2478CrossRefGoogle Scholar
  7. 7.
    Rose K, Steinbüchel A (2005) Appl Environ Microbiol 71:2803–2812CrossRefGoogle Scholar
  8. 8.
    Bode HB, Zeeck A, Plückhahn K, Jendrossek D (2000) Appl Environ Microbiol 66:3680–3685CrossRefGoogle Scholar
  9. 9.
    Rose K, Tenberge KB, Steinbüchel A (2005) Biomacromolecules 6:180–188CrossRefGoogle Scholar
  10. 10.
    Tsuchii A, Takeda K (1990) Appl Environ Microbiol 56:269–274Google Scholar
  11. 11.
    Heuston S, Begley M, Gahan CGM, Hill C (2012) Microbiology 158:1389–1401CrossRefGoogle Scholar
  12. 12.
    Yikmis M, Steinbüchel A (2012) Appl Environ Microbiol 78:4543–4551CrossRefGoogle Scholar
  13. 13.
    Chengalroyen MD, Dabbs E (2012) JMBFS 2(3):872–885Google Scholar
  14. 14.
    Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbüchel A (2000) Appl Environ Microbiol 66(4):1639–1645CrossRefGoogle Scholar
  15. 15.
    Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM, Linos A, Steinbüchel A (2001) FEMS Microbiol Lett 205:277–282CrossRefGoogle Scholar
  16. 16.
    Rook JJ (1955) Appl Environ Microbiol 3:302–309Google Scholar
  17. 17.
    Tsuchii A, Suzuki T, Takeda K (1985) Appl Environ Microbiol 50:965–970Google Scholar
  18. 18.
    Tsuchii A, Tokiwa Y (1999) J Biosci Bioeng 87:542–544CrossRefGoogle Scholar
  19. 19.
    Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM (1999) Int J Syst Bacteriol 49:1785–1791CrossRefGoogle Scholar
  20. 20.
    Linos A, Berekaa MM, Steinbüchel A, Kim KK, Spröer C, Kroppenstedt RM (2002) Int J Syst Evol Microbiol 52:1133–1139CrossRefGoogle Scholar
  21. 21.
    Bredberg K, Andersson BE, Landfors E, Holst O (2002) Bioresour Technol 83:221–224CrossRefGoogle Scholar
  22. 22.
    Kim JK, Park JW (1999) J Appl Polym Sci 72:1543–1549CrossRefGoogle Scholar
  23. 23.
    Sato S, Honda Y, Kuwahara M, Kishimoto H, Yagi N, Muraoka K, Watanabe T (2004) Biomacromolecules 5:511–515CrossRefGoogle Scholar
  24. 24.
    Roy RV, Das M, Banerjee R, Bhowmick AK (2006) Bioresour Technol 97:2485–2488CrossRefGoogle Scholar
  25. 25.
    Christiansson M, Stenberg B, Wallenberg LR, Holst O (1998) Biotechnol Lett 20:637–642CrossRefGoogle Scholar
  26. 26.
    Azhari CH, Saad A, Yusoff WMW, Ikram A (2002) Pak J Biol Sci 5:329–331CrossRefGoogle Scholar
  27. 27.
    Hiessl S, Schuldes J, Thürmer A, Halbsguth T, Bröker D, Angelov A, Liebl W, Daniel R, Steinbüchel A (2012) Appl Environ Microbiol 78:2874–2887CrossRefGoogle Scholar
  28. 28.
    Schulte C, Arenskötter M, Berekaa MM, Arenskötter Q, Priefert H, Steinbüchel A (2008) Appl Environ Microbiol 74:7643–7653CrossRefGoogle Scholar
  29. 29.
    Enoki M, Doi Y, Iwata T (2003) Biomacromolecules 4:314–320CrossRefGoogle Scholar
  30. 30.
    Sato S, Honda Y, Kuwahara M, Watanabe T (2003) Biomacromolecules 4:321–329CrossRefGoogle Scholar
  31. 31.
    Braaz R, Fischer P, Jendrossek D (2004) Appl Environ Microbiol 70:7388–7395CrossRefGoogle Scholar
  32. 32.
    Jendrossek D, Reinhardt S (2003) FEMS Microbiol Lett 224:61–65CrossRefGoogle Scholar
  33. 33.
    Schmitt G, Seiffert G, Kroneck PM, Braaz R, Jendrossek D (2010) Microbiology 156:2537–2548CrossRefGoogle Scholar
  34. 34.
    Birke J, Hambsch N, Schmitt G, Altenbuchner J, Jendrossek D (2012) Appl Environ Microbiol. doi: 10.1128/AEM.02385-12 Google Scholar
  35. 35.
    Hambsch N, Schmitt G, Jendrossek D (2010) J Appl Microbiol 109:1067–1075CrossRefGoogle Scholar
  36. 36.
    Yikmis M, Steinbüchel A (2012a) MicrobiologyOpen 13-24Google Scholar
  37. 37.
    Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Nature 417:141–147CrossRefGoogle Scholar
  38. 38.
    Bröker D, Arenskötter M, Legatzki A, Nies DH, Steinbüchel A (2004) J Bacteriol 186:212–225CrossRefGoogle Scholar
  39. 39.
    Ibrahim EAM, Arenskotter M, Luftmann H, Steinbüchel A (2006) Appl Environ Microbiol 72:3375–3385CrossRefGoogle Scholar
  40. 40.
    Romine RA, Romine MF (1998) Polym Degrad Stabil 59:353–358CrossRefGoogle Scholar
  41. 41.
    Bredberg K, Persson J, Christiansson M, Stenberg B, Holst O (2001) Appl Microbiol Biotechnol 55:43–48CrossRefGoogle Scholar
  42. 42.
    Heisey RM, Papadatos S (1995) Appl Environ Microbiol 61:3092–3097Google Scholar
  43. 43.
    Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M (2011) Enzyme Microb Technol 49:526–531CrossRefGoogle Scholar
  44. 44.
    Linos A, Rudolf R, Keller U, Steinbüchel A (2000) FEMS Microbiol Lett 182:155–161CrossRefGoogle Scholar
  45. 45.
    Jendrossek D, Tomasi G, Schlegel HG (1997b) Mikrobieller abbau von kautschuk, Vandenhoeck & Ruprecht in Gottingen, 9Google Scholar
  46. 46.
    Gallert C (2000) Syst Appl Microbiol 23:433CrossRefGoogle Scholar
  47. 47.
    Cherian E, Jayachandran K (2009) Int J Environ Res 3:599–604Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of GeneticsUniversity of WitwatersrandJohannesburg, BraamfonteinSouth Africa
  2. 2.Department of GeneticsUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations