Skip to main content

Advertisement

Log in

New Non-food-Based Composites of Acorn Nutlet and Polycaprolactone: Preparation and Characterization Evaluation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Connors P, Smith K (1980) Mar Pollut Bull 13:18

    Article  Google Scholar 

  2. Ruan XY, Zhou DC, He YB, Chen WM (1996) J Mater Process Tech 59:205

    Article  Google Scholar 

  3. Vivian CMG, Murray LA (2001) Encycl Ocean Sci 4:2236

    Article  Google Scholar 

  4. Avella M, Bogoeva-Gaceva G, Bularovska A, Errico ME, Gentile G, Grozdanov A (2008) J Appl Polym Sci 108:3542

    Article  CAS  Google Scholar 

  5. Gonçalves SPC, Martins-Franchetti SM, Chinaglia DL (2009) J Polym Environ 17:280

    Article  Google Scholar 

  6. He Y, Qian ZY, Zhang HL, Liu XB (2004) Colloid Polym Sci 282:972

    Article  CAS  Google Scholar 

  7. Wang SG, Nishide H, Tsuchida E (1999) Polym Adv Technol 10:282

    Article  CAS  Google Scholar 

  8. Anuradha M, Kumar VG (1999) Indian J Chem 38:525

    Google Scholar 

  9. Funabashi M, Ninomiya F, Kunioka M (2007) J Polym Environ 15:7

    Article  CAS  Google Scholar 

  10. Aamer AS, Fariha H, Abdul H, Safia A (2008) Biotechnol Adv 26:246

    Google Scholar 

  11. Islam MS, Pickering KL, Foreman NJ (2010) Polym Degrad Stab 95:59

    Article  CAS  Google Scholar 

  12. Ochi S (2008) Mech Mater 40:446

    Article  Google Scholar 

  13. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stab 86:401

    Article  CAS  Google Scholar 

  14. Leible L (1996) Starch/Stärke 48:121

    Article  CAS  Google Scholar 

  15. Fringant C, Rinaudo M, Grenoble N, Gontard S, Guilbert S (1998) Starch/Stärke 50:292

    Article  CAS  Google Scholar 

  16. Mathew AP, Dufresne A (2002) Biomacromolecules 3:1101

    Article  CAS  Google Scholar 

  17. Van der Burg MC, Van der Woude ME, Janssen LPBM, Vinyl J (1996) Addit Technol 2:170

    Article  Google Scholar 

  18. Koenig MF, Huang SJ (1995) Polym. 36:1877

    Article  CAS  Google Scholar 

  19. Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) Carbohyd Polym 50:429

    Article  CAS  Google Scholar 

  20. Bastioli C, Cerutti A, Guanella I, Romano GC, Tosin MPJ (1995) Environ Polym Degrad 3:81

    Article  CAS  Google Scholar 

  21. Crescenzi V, Mancini G, Calzolari G, Borri C (1972) Eur Polym J 8:449

    Article  CAS  Google Scholar 

  22. Grigat E, Koch R, Timmermann R (1998) Polym Degrad Stab 59:223

    Article  CAS  Google Scholar 

  23. Kotnis MA, O’Brien GS, Willett JL (1995) J Environ Polym Degrad 3:97

    Article  CAS  Google Scholar 

  24. Shogren RL (1995) J Environ Polym Degrad 3:75

    Article  CAS  Google Scholar 

  25. Oksman K, Skrifvars M, Selin J-F (2003) Compos Sci Technol 63:1317

    Article  CAS  Google Scholar 

  26. Yukata T, Akira I, Masatoshi K (1990) Polym Mater Sci Eng 63:742

    Google Scholar 

  27. Tokiwa Y, Suzuki T (1977) Nature (London) 270:76

    Article  CAS  Google Scholar 

  28. Schlemmer D, Sales MJA, Resck IS (2009) Carbohyd Polym 75:58

    Article  CAS  Google Scholar 

  29. di Franco CR, Cyras VP, Busalmen JP, Ruseckaite RA, Vázquez A (2004) Polym Degrad Stab 86:95

    Article  Google Scholar 

  30. Zheng P, Chang PR, Yu J, Ma X (2009) Polymer 78:296

    CAS  Google Scholar 

  31. Ioannis A, Costas GB (1999) Carbohyd Polym 38:47

    Article  Google Scholar 

  32. Duquesne E, Rutot D, Degée P, Dubois P (2001) Macromol Symp 175:33

    Article  CAS  Google Scholar 

  33. Averous L, Moro L, Dole P, Fringant C (2000) Polymer 41:4157

    Article  CAS  Google Scholar 

  34. Ishiaku US, Pang KW, Lee WS, mohd. Ishak ZA (2002) Eur. Polym. J. 38:393

    Article  CAS  Google Scholar 

  35. Gáspár M, Benkö Z, Dogossy G, Réczey K, Czigány T (2005) Polym Degrad Stab 90:563

    Article  Google Scholar 

  36. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohyd Polym 60:283

    Article  CAS  Google Scholar 

  37. Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C (2002) Polym Degrad Stab 77:17

    Article  CAS  Google Scholar 

  38. Schlemmer D, de Oliveira ER, Araújo Sales MJ (2007) J Therm Anal Calorim 87:635

    Article  CAS  Google Scholar 

  39. Schweigman C, Bakker EJ, Snijders TAB (1990) Eur J Oper Res 49:211

    Article  Google Scholar 

  40. Zezza A, Tasciotti L (2010) Food Policy 35:265

    Article  Google Scholar 

  41. Agcaoili-Sombilla M, Rosegrant MW, Asian J (1996) Economic 7:265

    Google Scholar 

  42. Stentiford GD (2012) J Invert Path 110:139

    Article  Google Scholar 

  43. Eggersdorfer M, Meyer J, Eckes P (1992) FEMS Microbiol Lett 103:355

    Article  Google Scholar 

  44. Becker J, Wittmann C (2012) Curr Opin Biotechnol 23:631

    Article  CAS  Google Scholar 

  45. Xie BX, Xie T (2002) J Cent South For Univ 22:36

    Google Scholar 

  46. Lee HA, Kim NH, Katsuyoshi N (1998) Thermochim Acta 322:39

    Article  Google Scholar 

  47. Zhu MX, Dong Q, Chen DJ (2005) Chem World 46:665

    CAS  Google Scholar 

  48. Kweon DK, Cha DS, Park HJ, Lim ST (2000) J Appl Polym Sci 78:986

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Technology R&D Program of China, Grant Number: 2012BAD32B01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Wang, C., Chu, F. et al. New Non-food-Based Composites of Acorn Nutlet and Polycaprolactone: Preparation and Characterization Evaluation. J Polym Environ 21, 1072–1082 (2013). https://doi.org/10.1007/s10924-013-0592-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0592-0

Keywords

Navigation