Journal of Polymers and the Environment

, Volume 21, Issue 4, pp 917–929 | Cite as

Microwave Assisted Short-Time Alkaline Extraction of Birch Xylan

  • Suhara PanthapulakkalEmail author
  • Viktoriya Pakharenko
  • Mohini Sain
Original Paper


Efficacy of microwave energy for the extraction of xylan from birch wood as an alternative to conventional method of extraction was investigated. Effect of irradiation time and microwave power input on the solubilization of wood and yield of extracted xylan was studied. The maximum yield of xylan obtained at the higher power level was significantly lesser compared to the lower power level indicating the molecular degradation of the polymer. The highest yield of xylan (60 % of the original xylan) was obtained at the lowest power level studied, 110 W, for an irradiation time of 10 min. Comparison with conventional extraction showed that 10 min of microwave extraction provided a similar wood dissolution to that at 90 °C for 1.5 h, but with a higher yield of xylan. Characterization of the precipitated xylan indicated that the extracted xylan contained 68–88 % of xylose with the major chemical structure consisting of a linear backbone of (1-4) β-d-xylopyransoyl residues. Molecular mass of the extracted xylan indicated that the xylan extracted using microwave contained 60–70 % of high molecular weight fraction, and about 30–40 % of low molecular weight fraction, whereas xylan extracted using conventional method showed a reverse trend. Molecular mass of non-aggregated xylan was reported to be 6,000 Da (in terms of dextran equivalents). Crystallinity of wood fibers increased irrespective of the method of extraction indicating no degradation of the strength of the fibers occurred during the extraction.


Xylan Microwave-assisted extraction Hemicelluloses Biopolymer 



The authors would like to acknowledge the financial support from Ontario Research Fund-Research Excellence (ORE-RE) and in-kind support from St. Mary’s Paper, Ontario, Canada.


  1. 1.
    Ebringerová A, Hromadkova Z, Kacurakova M, Antal M (1994) Carbohydr Polym 24:301CrossRefGoogle Scholar
  2. 2.
    Ebringerová A (2005) Macromol Symp 232(1):1CrossRefGoogle Scholar
  3. 3.
    Garrote G, Dominguez H, Parajo JC (1999) J ChemTechnol Biotechnol 74(11):1101CrossRefGoogle Scholar
  4. 4.
    Niemela K, Alen R (1999) In: Sjorstrom E, Alen R (eds) Analytical methods in wood chemistry, pulping and paper making. Springer, Berlin, pp 193–332Google Scholar
  5. 5.
    Puis J, Saake B (2004) In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS symposium series 864, Washington DC, pp 24–37Google Scholar
  6. 6.
    Girio FM, Fonseca C, Carvalheiro F et al (2010) Biores Technol 101:4775CrossRefGoogle Scholar
  7. 7.
    Conner AH, Lorenz LF (1986) Wood Fiber Sci 18(2):248Google Scholar
  8. 8.
    Glasser WG, Kaar WE, Jain RK, Sealey JE (2000) Cellulose 7:299CrossRefGoogle Scholar
  9. 9.
    Ramos LP (2003) Quim Nova 26:863CrossRefGoogle Scholar
  10. 10.
    Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Carbohydr Polym 43:367CrossRefGoogle Scholar
  11. 11.
    Dashek WV (ed) (1997) Isolation, assay and characterization of plant carbohydrates. In: Methods in plant biochemistry and molecular biology. CRC Press, New York, pp 29–47Google Scholar
  12. 12.
    Vuorinen T, Alén R (1998) In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping, and papermaking. Springer, New York, pp 38–40Google Scholar
  13. 13.
    Ebringerova A, Heinze T (2000) Macromol Rapid Commun 21:542CrossRefGoogle Scholar
  14. 14.
    Datta AK (2001) Fundamentals of heat and moisture transport for microwave processing of foods. In: Datta AK, Anantheswaran RC (eds) Handbook of microwave technology for food applications. Marcel Dekker Inc., New York, pp 115–172Google Scholar
  15. 15.
    Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Chem Soc Rev 27:213CrossRefGoogle Scholar
  16. 16.
    Azuma J, Tanaka F, Koshijima T (1984) J Frerment Technol 62:377Google Scholar
  17. 17.
    Ooshima H, Aso K, Harano Y (1984) Biotechol Lett 1984:289CrossRefGoogle Scholar
  18. 18.
    Kitchiya P, Intankul P, Krairish M (2003) J Wood Chem Technol 23:217CrossRefGoogle Scholar
  19. 19.
    Lundqvist J, Teleman A, Junel L, Zacchi G, Dalhman O, Tjerneld F et al (2002) Carbohydr Polym 48:29CrossRefGoogle Scholar
  20. 20.
    Jacobs A, Palm M, Zacchi G, Dahlman O (2003) Carbohydr Res 338:1869CrossRefGoogle Scholar
  21. 21.
    Benko Z, Andersson A, Szengyel Z, Gasper M, Reczey K et al (2007) Appl Biochem Biotechnol 137–140:253CrossRefGoogle Scholar
  22. 22.
    Yoshida T, Tsubaki S, Teramoto Y, Azuma J (2010) Bioresour Technol 101:7820CrossRefGoogle Scholar
  23. 23.
    Roos A, Person T, Krawczyk H, Zachi G, Stalbrand H (2009) Bioresour Technol 100:763CrossRefGoogle Scholar
  24. 24.
    Zobel B, McElvee R (1966) Tappi J 49(9):383Google Scholar
  25. 25.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) National renewable energy laboratory technical report NREL/TP-510-42618Google Scholar
  26. 26.
    Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29:786–794CrossRefGoogle Scholar
  27. 27.
    Jiang ZH, Yang Z, So CL, Hse CY (2007) J Wood Sci 53:449CrossRefGoogle Scholar
  28. 28.
    Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1979) Anal Chem 28:350CrossRefGoogle Scholar
  29. 29.
    Fournier E (2001) Anal chem E1.1.1-E1.1.8. Wiley, New YorkGoogle Scholar
  30. 30.
    Kleppe PJ (1970) Tappi J 53(1):35Google Scholar
  31. 31.
    Kappe CO (2008) Chem Soc Rev 37:1127CrossRefGoogle Scholar
  32. 32.
    Kingston HM, Haswell SJ. (1997) (Eds.) Microwave-enhanced chemistry—fundamentals, sample preparation, and applications. American Chemical Society, WashingtonGoogle Scholar
  33. 33.
    Hu Z, Wen Z (2008) Biochem Eng J 38:369CrossRefGoogle Scholar
  34. 34.
    Panthapulakkal S, Sain M (2013) Wood Chem Technol 33(2):92CrossRefGoogle Scholar
  35. 35.
    Cave ID (1997) Wood Sci Technol 31:143CrossRefGoogle Scholar
  36. 36.
    Borysiak S, Doczekalska B (2005) Fibers Text East Eur 13(5):87Google Scholar
  37. 37.
    Marchessault RH, Liang CY (1962) J Polym Sci 59:357CrossRefGoogle Scholar
  38. 38.
    Sun JX, Sun RC, Sun XF, Su YQ (2004) Carbohydr Res 339:291CrossRefGoogle Scholar
  39. 39.
    Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Carbohydr Polym 77:851CrossRefGoogle Scholar
  40. 40.
    Jacobs A, Dahlman O (2001) Biomacromol 2:894CrossRefGoogle Scholar
  41. 41.
    Bikova T, Treimanis A (2002) Plant Physiol Biochem 40:347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Suhara Panthapulakkal
    • 1
    • 2
  • Viktoriya Pakharenko
    • 2
  • Mohini Sain
    • 1
    • 2
  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.Faculty of Forestry, Center for Biomaterials and Biocomposites ProcessingUniversity of TorontoTorontoCanada

Personalised recommendations