Skip to main content
Log in

Microwave Assisted Short-Time Alkaline Extraction of Birch Xylan

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Efficacy of microwave energy for the extraction of xylan from birch wood as an alternative to conventional method of extraction was investigated. Effect of irradiation time and microwave power input on the solubilization of wood and yield of extracted xylan was studied. The maximum yield of xylan obtained at the higher power level was significantly lesser compared to the lower power level indicating the molecular degradation of the polymer. The highest yield of xylan (60 % of the original xylan) was obtained at the lowest power level studied, 110 W, for an irradiation time of 10 min. Comparison with conventional extraction showed that 10 min of microwave extraction provided a similar wood dissolution to that at 90 °C for 1.5 h, but with a higher yield of xylan. Characterization of the precipitated xylan indicated that the extracted xylan contained 68–88 % of xylose with the major chemical structure consisting of a linear backbone of (1-4) β-d-xylopyransoyl residues. Molecular mass of the extracted xylan indicated that the xylan extracted using microwave contained 60–70 % of high molecular weight fraction, and about 30–40 % of low molecular weight fraction, whereas xylan extracted using conventional method showed a reverse trend. Molecular mass of non-aggregated xylan was reported to be 6,000 Da (in terms of dextran equivalents). Crystallinity of wood fibers increased irrespective of the method of extraction indicating no degradation of the strength of the fibers occurred during the extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ebringerová A, Hromadkova Z, Kacurakova M, Antal M (1994) Carbohydr Polym 24:301

    Article  Google Scholar 

  2. Ebringerová A (2005) Macromol Symp 232(1):1

    Article  Google Scholar 

  3. Garrote G, Dominguez H, Parajo JC (1999) J ChemTechnol Biotechnol 74(11):1101

    Article  CAS  Google Scholar 

  4. Niemela K, Alen R (1999) In: Sjorstrom E, Alen R (eds) Analytical methods in wood chemistry, pulping and paper making. Springer, Berlin, pp 193–332

  5. Puis J, Saake B (2004) In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS symposium series 864, Washington DC, pp 24–37

  6. Girio FM, Fonseca C, Carvalheiro F et al (2010) Biores Technol 101:4775

    Article  CAS  Google Scholar 

  7. Conner AH, Lorenz LF (1986) Wood Fiber Sci 18(2):248

    CAS  Google Scholar 

  8. Glasser WG, Kaar WE, Jain RK, Sealey JE (2000) Cellulose 7:299

    Article  CAS  Google Scholar 

  9. Ramos LP (2003) Quim Nova 26:863

    Article  CAS  Google Scholar 

  10. Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Carbohydr Polym 43:367

    Article  CAS  Google Scholar 

  11. Dashek WV (ed) (1997) Isolation, assay and characterization of plant carbohydrates. In: Methods in plant biochemistry and molecular biology. CRC Press, New York, pp 29–47

  12. Vuorinen T, Alén R (1998) In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping, and papermaking. Springer, New York, pp 38–40

  13. Ebringerova A, Heinze T (2000) Macromol Rapid Commun 21:542

    Article  CAS  Google Scholar 

  14. Datta AK (2001) Fundamentals of heat and moisture transport for microwave processing of foods. In: Datta AK, Anantheswaran RC (eds) Handbook of microwave technology for food applications. Marcel Dekker Inc., New York, pp 115–172

  15. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Chem Soc Rev 27:213

    Article  CAS  Google Scholar 

  16. Azuma J, Tanaka F, Koshijima T (1984) J Frerment Technol 62:377

    CAS  Google Scholar 

  17. Ooshima H, Aso K, Harano Y (1984) Biotechol Lett 1984:289

    Article  Google Scholar 

  18. Kitchiya P, Intankul P, Krairish M (2003) J Wood Chem Technol 23:217

    Article  Google Scholar 

  19. Lundqvist J, Teleman A, Junel L, Zacchi G, Dalhman O, Tjerneld F et al (2002) Carbohydr Polym 48:29

    Article  CAS  Google Scholar 

  20. Jacobs A, Palm M, Zacchi G, Dahlman O (2003) Carbohydr Res 338:1869

    Article  CAS  Google Scholar 

  21. Benko Z, Andersson A, Szengyel Z, Gasper M, Reczey K et al (2007) Appl Biochem Biotechnol 137–140:253

    Article  Google Scholar 

  22. Yoshida T, Tsubaki S, Teramoto Y, Azuma J (2010) Bioresour Technol 101:7820

    Article  CAS  Google Scholar 

  23. Roos A, Person T, Krawczyk H, Zachi G, Stalbrand H (2009) Bioresour Technol 100:763

    Article  CAS  Google Scholar 

  24. Zobel B, McElvee R (1966) Tappi J 49(9):383

    CAS  Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) National renewable energy laboratory technical report NREL/TP-510-42618

  26. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29:786–794

    Article  CAS  Google Scholar 

  27. Jiang ZH, Yang Z, So CL, Hse CY (2007) J Wood Sci 53:449

    Article  CAS  Google Scholar 

  28. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1979) Anal Chem 28:350

    Article  Google Scholar 

  29. Fournier E (2001) Anal chem E1.1.1-E1.1.8. Wiley, New York

    Google Scholar 

  30. Kleppe PJ (1970) Tappi J 53(1):35

    CAS  Google Scholar 

  31. Kappe CO (2008) Chem Soc Rev 37:1127

    Article  CAS  Google Scholar 

  32. Kingston HM, Haswell SJ. (1997) (Eds.) Microwave-enhanced chemistry—fundamentals, sample preparation, and applications. American Chemical Society, Washington

  33. Hu Z, Wen Z (2008) Biochem Eng J 38:369

    Article  CAS  Google Scholar 

  34. Panthapulakkal S, Sain M (2013) Wood Chem Technol 33(2):92

    Article  CAS  Google Scholar 

  35. Cave ID (1997) Wood Sci Technol 31:143

    Article  CAS  Google Scholar 

  36. Borysiak S, Doczekalska B (2005) Fibers Text East Eur 13(5):87

    CAS  Google Scholar 

  37. Marchessault RH, Liang CY (1962) J Polym Sci 59:357

    Article  CAS  Google Scholar 

  38. Sun JX, Sun RC, Sun XF, Su YQ (2004) Carbohydr Res 339:291

    Article  CAS  Google Scholar 

  39. Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Carbohydr Polym 77:851

    Article  CAS  Google Scholar 

  40. Jacobs A, Dahlman O (2001) Biomacromol 2:894

    Article  CAS  Google Scholar 

  41. Bikova T, Treimanis A (2002) Plant Physiol Biochem 40:347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Ontario Research Fund-Research Excellence (ORE-RE) and in-kind support from St. Mary’s Paper, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhara Panthapulakkal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panthapulakkal, S., Pakharenko, V. & Sain, M. Microwave Assisted Short-Time Alkaline Extraction of Birch Xylan. J Polym Environ 21, 917–929 (2013). https://doi.org/10.1007/s10924-013-0591-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0591-1

Keywords

Navigation