Skip to main content
Log in

Ultrastructural, Morphological, and Antifungal Properties of Micro and Nanoparticles of Chitosan Crosslinked with Sodium Tripolyphosphate

Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated the antibacterial effect of micro and nanoparticles of chitosan (CS) crosslinked with sodium tripolyphosphate (TPP), and incorporating metallic ions, bringing that the size, shape, and zeta potential are related to the antimicrobial potential. However, there are few studies on the antifungal activity and the effect of TPP on the antimicrobial potential. Micro and nanoparticles were prepared from CS by ionotropic gelation with TPP, and structurally characterized by transmission and scanning electron spectroscopy, and Fourier transformed infrared spectroscopy. Depending on the concentration of CS and TPP, spherical particles were obtained from 80 nm to 20 μm. Subsequently, particles were evaluated for their antifungal potential against Aspergillus parasiticus assessing radial growth, spore germination, and morphological changes. An increase in the antifungal potential compared with CS in solution was observed, inhibiting the development of the fungus causing clear morphological changes in both, hyphae and spores. Particle size and the availability of functional groups of CS/TPP (amino group and phosphate), suggest a possible synergistic effect between CS and TPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Beaney P, Lizardi-Mendoza J, Healy M (2005) J Chem Technol Biotechnol 80:145–150

    Article  CAS  Google Scholar 

  2. Lárez-Velásquez C (2006) Av Quim 1:15–21

    Google Scholar 

  3. Honarkar H, Barikani M (2009) Monatsh Chem 140:1403–1420

    Article  CAS  Google Scholar 

  4. Il’ina AV, Varlamov VP, Yu AE, Orlov VN, Skryabin KG (2008) Chemistry 42:199–201

    Google Scholar 

  5. López-León T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005) J Colloid Interface Sci 283:344–351

    Article  Google Scholar 

  6. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) J Food Sci 72(5):87–100

    Article  Google Scholar 

  7. Rabea EI, Mohamed ET, Stevens CV, Smagghe G, Steurbaut W (2003) Biomacromolecules 4:1457–1465

    Article  CAS  Google Scholar 

  8. Cota-Arriola O, Cortez-Rocha MO, Rosas-Burgos EC, Burgos-Hernández A, López-Franco YL, Plascencia-Jatomea M (2011) Polym Int 60:937–944

    Article  CAS  Google Scholar 

  9. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, Lin JG (2004) Acta Pharmacol Sin 25:932–936

    CAS  Google Scholar 

  10. Palma-Guerrero J, Lopez-Jimenez JA, Pérez-Bernal AJ, Huang IC, Jansson HB, Salinas J, Villalain J, Read ND, López Llorca LV (2010) Mol Microbiol 75:1021–1032

    Article  CAS  Google Scholar 

  11. Nair R, Haritha-Reddy B, Ashok-Kumar CK, Jayraj-Kumar K (2009) J Pharm Sci Res 1:1–12

    CAS  Google Scholar 

  12. Du WL, Xu YL, Xu ZR, Fan CL (2008) Nanotechnology 19:1–5

    Google Scholar 

  13. Ali SW, Joshi M, Rajendran S (2010) Adv Sci Lett 3:452–460

    Article  CAS  Google Scholar 

  14. Teodoro JS, Simões AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM (2011) Toxicol In Vitro 25:665–670

    Article  Google Scholar 

  15. AshaRani PV, Low Kah MG, Hande MP, Valiyaveettil S (2009) ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  16. Du WL, Niu S, Xu YL, Xu ZR, Fan CL (2009) Carbohyd Polym 75:385–389

    Article  CAS  Google Scholar 

  17. Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF (2004) Carbohyd Res 339:2693–2700

    Article  CAS  Google Scholar 

  18. Sanpui P, Murugadoss A, Durga-Prasad V, Ghosh S, Chattopadhyay A (2008) Int J Food Microbiol 124:142–146

    Article  CAS  Google Scholar 

  19. Hu Z, Zhang J, Wing-Lai C, Shan-Szeto Y (2006) Mater Res Soc Symp Proc 920:662–668

    Article  Google Scholar 

  20. Cao XL, Chena C, Ma YL, Zhao CS (2010) J Mater Sci Mater Med 21:2861–2868

    Article  CAS  Google Scholar 

  21. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) J Control Release 100:5–28

    Article  CAS  Google Scholar 

  22. Martínez-Camacho AP, Cortez-Rocha MO, Ezquerra-Brauer JM, Graciano-Verdugo AZ, Rodríguez-Félix F, Castillo-Ortega MM, Yépiz-Gómez MS, Plascencia-Jatomea M (2010) Carbohyd Polym 82:305–315

    Article  Google Scholar 

  23. Hui-Yun Z, Xi-Guang C (2008) Front Mater Sci 2:417–425

    Article  Google Scholar 

  24. Ruobao L, Chunling Z, Weifen Z, Lihong S, Jinbao T (2009) J Nat Sci 14:362–368

    Google Scholar 

  25. Poncelet D (2006) Microencapsulation: fundamentals, methods and applications. In: Blitz JP, Gun’ko VM (eds) Surface chemistry in biomedical and environmental science. Springer, Heidelberg, pp 23–34

    Chapter  Google Scholar 

  26. Mathew S, Abraham TE (2008) Food Hydrocoll 22:826–835

    Article  CAS  Google Scholar 

  27. Xu Y, Du Y (2003) Int J Pharm 250:215–226

    Article  CAS  Google Scholar 

  28. Brumkar DB, Pokhakar VB (2006) AAPS Pharm Sci Tech 7:20–25

    Google Scholar 

  29. Bautista-Baños S, Hernández-Lauzárdo AN, Velásquez-Del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E, Wilson CL (2006) Crop Prot 25:108–118

    Article  Google Scholar 

  30. Kong M, Chen XG, Xue YP, Liu CS, Yu LJ, Ji QX, Cha DS, Park H (2008) J Front Mater Sci China 2:214–220

    Article  Google Scholar 

  31. Sanpo N, Ming S, Cheang P, Khor KA (2009) J Therm Spray Technol 18(4):600–608

    Article  CAS  Google Scholar 

  32. Vareltuzis K, Soultos N, Koidis P, Ambrosiadis J, Gerigeorgis C (1997) Lebensmittel Wissenschaft and Technologie 30:665–669

    Article  Google Scholar 

  33. Sofos J (1985) J Food Sci 50:1379–1383

    Article  CAS  Google Scholar 

  34. Horary S, Ghajar K, Khazaeli P, Shalchian P (2011) Trop J Pharm Res 10:69–74

    Google Scholar 

  35. Guibal E (2004) Sep Purif Technol 38:45–74

    Article  Google Scholar 

  36. Plascencia-Jatomea M, Viniera G, Olayo R, Castillo-Ortega MM, Shirai K (2003) Macromol Biosci 3:582–586

    Article  CAS  Google Scholar 

  37. Palmeira de Oliveira R, Palmeira de Oliveira A, Gaspar C, Silvestre S, Martinez de Oliveira J, Amaral MH, Breitenfeld L (2011) Sodium tripolyphosphate: an excipient with intrinsic in vitro anti Candida activity. Int J Pharm 421:130–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by the Mexican Council for Science and Technology (CONACyT) through Grants No. 58249 and No. 53493, and the graduate scholarship granted to M.Sc. Octavio Cota-Arriola.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Plascencia-Jatomea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cota-Arriola, O., Cortez-Rocha, M.O., Ezquerra-Brauer, J.M. et al. Ultrastructural, Morphological, and Antifungal Properties of Micro and Nanoparticles of Chitosan Crosslinked with Sodium Tripolyphosphate. J Polym Environ 21, 971–980 (2013). https://doi.org/10.1007/s10924-013-0583-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0583-1

Keywords

Navigation