Skip to main content
Log in

Novel Glycopolymers Based on d-Mannose and Methacrylates: Synthesis, Thermal Stability and Biodegradability Testing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper presents the synthesis, thermal stability and biodegradability of new d-mannose glycopolymers. These glycopolymers have been obtained by free radical bulk copolymerization of d-mannose based glycomonomer, 1-O-(2′-hydroxy-3′-methacryloyloxypropyl)-2,3:5,6-di-O-isopropylidene-d-mannofuranose (Mm), and respectively d-mannose derived oligomer (Mo) with methyl methacrylate and respectively 2-hydroxypropyl methacrylate. The chemical structures of Mm and Mo have been confirmed via FTIR, 1H-NMR and HPLC–MS spectroscopy. The copolymerization process has been investigated using differential scanning calorimetry, which allowed calculating the activation energies by applying Kissinger–Akahira–Sunose method. The glycopolymers are thermally stable, fact assessed by TG analysis; their glass transition temperature exceeds 50 °C, so they are part of the glassy class of polymers. The biodegradability of these glycopolymers has been investigated in vitro, using pure cultures of Zymomonas mobilis and Trichoderma reesei. The glycopolymers lose up to 55 % weight in just 14 days of incubation as their surface and composition is altered by colonies of microorganisms that grow on/into them, fact demonstrated using SEM/EDX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Tao J, Song C, Cao M, Hu D, Liu L, Liu N, Wang S (2009) Polym Degrad Stab 94:575–583

    Article  CAS  Google Scholar 

  2. Shi Q, Chen C, Gao L, Xu H, Guo W (2011) Polym Degrad Stab 96:175–182

    Article  CAS  Google Scholar 

  3. Patel P, Hull TR, Lyon RE, Stoliarov SI, Walters RN, Crowley S, Safronava N (2011) Polym Degrad Stab 96:12–22

    Article  CAS  Google Scholar 

  4. Riaz U, Ashraf SM, Sharma HO (2011) Polym Degrad Stab 96:32–42

    Article  Google Scholar 

  5. Top A, Kiick KL (2010) Adv Drug Deliv Rev 62:1530–1540

    Article  CAS  Google Scholar 

  6. Jutz G, Boker A (2011) Polymer 52:211–232

    Article  CAS  Google Scholar 

  7. Grandtner G, Joly N, Cavrot JP, Granet R, Bandur G, Rusnac L, Martin P, Krausz P (2005) e-Polymers 051:1–7

  8. Taniguchi T, Kunisada Y, Shinohara M, Kasuya M, Ogawa T, Kohri M, Nakahira T (2010) Colloids Surf 369:240–245

    Article  CAS  Google Scholar 

  9. Dai ZW, Wan LS, Xu ZK (2010) J Membr Sci 348:245–251

    Article  CAS  Google Scholar 

  10. Yang H, Guo TY, Zhou D (2011) Int J Biol Macromol 48:432–438

    Article  CAS  Google Scholar 

  11. Pfaff A, Barner L, Muller AHE, Granville AM (2011) Eur Polym J 47:805–815

    Article  CAS  Google Scholar 

  12. Sanchez-Chaves M, Ruiz C, Cerrada ML, Fernandez-Garcia M (2008) Polymer 49:2801–2807

    Article  CAS  Google Scholar 

  13. Cerrada ML, Sanchez-Chaves M, Ruiz C, Fernandez-Garcia M (2008) Eur Polym J 44:2194–2201

    Article  CAS  Google Scholar 

  14. Bordege V, Munoz-Bonilla A, Leon O, Sanchez-Chaves M, Cuervo-Rodriguez R, Fernandez-Garcia M (2010) React Funct Polym 71:1–10

    Article  Google Scholar 

  15. Che AF, Huang XJ, Xu ZK (2011) J Membr Sci 366:272–277

    Article  CAS  Google Scholar 

  16. Mishra V, Kumar R (2011) Carbohydr Polym 83:1534–1540

    Article  CAS  Google Scholar 

  17. Hanessian S (1997) Preparative carbohydrate chemistry. CRC Press, New York

    Google Scholar 

  18. Osborn HMI (2002) An introduction to carbohydrate synthesis. Academic Press, Oxford, UK

  19. Srinivasan R, Chandrasekharam M, Vani PVSN, Seema Chida A, Singhy AK (2002) Synth Commun 32:1853–1858

    Article  CAS  Google Scholar 

  20. Ştefan LM, Pană AM, Silion M, Bălan M, Bandur G, Rusnac LM (2011) Proc World Acad Sci Eng Technol 76:298–302

    Google Scholar 

  21. Ştefan LM, Pană AM, Pascariu MC, Şişu E, Bandur G, Rusnac LM (2011) Turk J Chem 35:757–767

    Google Scholar 

  22. Pană AM, Rusnac LM, Bandur G, Silion M, Deleanu C, Bălan M (2011) e-Polymers 004:1–13

  23. Kannan P, Biernacki JJ, Visco DP Jr, Lambert W (2009) J Anal Appl Pyrolysis 84:139–144

    Article  CAS  Google Scholar 

  24. Pisharath S, Ang HG (2007) Thermochim Acta 459:26–33

    Article  CAS  Google Scholar 

  25. Srivastava S, Zulfequar M, Kumar A (2010) J Non-Oxide Glasses 2:97–106

    Google Scholar 

  26. Ştefan LM, Pană AM, Bandur G, Martin P, Popa M, Rusnac LM (2013) J Therm Anal Calorim 111:789–797

    Article  Google Scholar 

  27. Zubitur M, Gomez MA, Cortazar M (2009) Polym Degrad Stab 94:804–809

    Article  CAS  Google Scholar 

  28. Faghihi K, Shabanian M, Shabani F (2011) J Polym Res 18:637–644

    Article  CAS  Google Scholar 

  29. Yamashita Y, Kurosumi A, Sasaki C, Nakamura Y (2008) Biochem Eng J 42:314–319

    Article  CAS  Google Scholar 

  30. Fu N, Peiris P, Markham J, Bavor J (2009) Enzym Microb Technol 45:210–217

    Article  CAS  Google Scholar 

  31. Zikman P, Shakirova L, Auzina L, Andersone I (2007) Process Biochem 42:745–750

    Article  Google Scholar 

  32. Dienes D, Borjesson J, Hagglund P, Tjerneld F, Liden G, Reczy K, Stalbrand H (2007) Enzym Microb Technol 40:1087–1094

    Article  CAS  Google Scholar 

  33. Kovacs K, Szakacs G, Zacchi G (2009) Bioresour Technol 100:1350–1357

    Article  CAS  Google Scholar 

  34. Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Fungal Genet Biol 46:564–574

    Article  CAS  Google Scholar 

  35. Pană AM, Gherman V, Sfîrloagă P, Bandur G, Ştefan LM, Popa M, Rusnac LM (2012) Polym Test 31:384–392

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the project PERFORM-ERA “Postdoctoral Performance for Integration in the European Research Area” (ID-57649) (fellowship of A. M. PANĂ), financed by the European Social Fund and the Romanian Government. This work was partially supported by the strategic grant POSDRU/88/1.5/S/50783, Project ID50783 (fellowship of L. M. ŞTEFAN), co-financed by the European Social Fund—Investing in People, within the Sectorial Operational Programme Human Resources Development 2007/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian-Mircea Rusnac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pană, AM., Ştefan, LM., Bandur, G. et al. Novel Glycopolymers Based on d-Mannose and Methacrylates: Synthesis, Thermal Stability and Biodegradability Testing. J Polym Environ 21, 981–994 (2013). https://doi.org/10.1007/s10924-013-0579-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0579-x

Keywords

Navigation