Skip to main content
Log in

Characterization of Biodegradable Polymer Blends of Acetylated and Hydroxypropylated Sago Starch and Natural Rubber

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Development of biodegradable polymers from absolute environmental friendly materials has attracted increasing research interest due to public awareness of waste disposal problems caused by low degradable conventional plastics. In this study, the potential of incorporating natural rubber latex (NRL) into chemically modified sago starch for the making biodegradable polymer blends was assessed. Native sago starch was acetylated and hydroxypropylated before gelatinization in preparing starch thermoplastic using glycerol. They were than casted with NRL into biopolymer films according to the ratios of 100.00/0.00, 99.75/1.25, 98.50/2.50, 95.00/5.00, 90.00/10.00 and 80.00/20.00 wt/wt, via solution spreading technique. Water absorption, thermal, mechanical, morphological and biodegradable properties of the product films were evaluated by differential scanning calorimetry (DSC), universal testing machine (UTM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy. Results showed that acetylation promoted the incorporating behavior of NRL in sago starch by demonstrating a good adhesion characteristic and giving a uniform, homogenous micro-structured surface under SEM observation. However, the thin biopolymer films did not exhibit any remarkable trend in their DSC thermal profile and UTM mechanical properties. The occurrence of NRL suppressed water adsorption capacity and delayed the biodegradability of the biopolymer films in the natural environment. Despite the depletion in water adsorption capacity, all of the product films degraded 50 % within 12 weeks. This study concluded that biopolymers with desirable properties could be formulated by choosing an appropriate casting ratio of the sago starch to NRL with suitable chemical substitution modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guohua Z, Ya L, Cuilan F, Min Z, Caiqiong Z, Zongdao C (2006) Polym Degrad Stabil 91:703

    Article  Google Scholar 

  2. Jang WY, Shin BY, Lee TJ, Narayan R (2007) J Ind Eng Chem 13:457

    CAS  Google Scholar 

  3. Rosa DS, Lopes DR, Calil MR (2005) Polym Test 24:756

    Article  CAS  Google Scholar 

  4. Lu DR, Xiao CM, Xu SJ (2009) Express Polym Lett 3:366

    Article  CAS  Google Scholar 

  5. Miladinov VD, Hanna MA (2001) Ind Crop Prod 13:21

    Article  CAS  Google Scholar 

  6. Guan JJ, Eskridge KM, Hanna MA (2005) Ind Crop Prod 22:109

    Article  CAS  Google Scholar 

  7. Rouilly A, Rigal L, Gilbert RG (2004) Polymer 45:7813

    Article  CAS  Google Scholar 

  8. Lopez OV, Garcia MA, Zaritzkya NE (2008) Carbohydr Polym 73:573

    Article  CAS  Google Scholar 

  9. Fringant C, Rinaudo M, Foray MF, Bardet M (1998) Carbohydr Polym 35:97

    Article  Google Scholar 

  10. Copinet A, Bliard C, Onteniente JP, Couturier Y (2001) Polym Degrad Stabil 71:203

    Article  CAS  Google Scholar 

  11. Guan JJ, Hanna MA (2004) Ind Crop Prod 19:255

    Article  CAS  Google Scholar 

  12. Kim M (2003) Carbohydr Polym 54:173

    Article  CAS  Google Scholar 

  13. Koenig MF, Huang SJ (1995) Polymer 36:1877

    Article  CAS  Google Scholar 

  14. Wu CS (2003) Polym Degrad Stabil 80:127

    Article  Google Scholar 

  15. Nakason C, Kaesaman A, Eardrod K (2005) Mater Lett 59:4020

    Article  CAS  Google Scholar 

  16. Arvanitoyannis I, Kolokuris I, Nakayama A, Aiba SI (1997) Carbohydr Polym 34:291

    Article  CAS  Google Scholar 

  17. Wu YP, Ji MQ, Qi Q, Wang YQ, Zhang LQ (2004) Macromol Rapid Commun 25:565

    Article  CAS  Google Scholar 

  18. Muvwanga OM, Nyirenda J (2007) First international multi-displine conference on recent advances in research 60–64

  19. Perera C, Hoover R, Martin AM (1997) Food Res Int 30:235

    Article  CAS  Google Scholar 

  20. Liu C, Shao Y, Jia D (2008) Polymer 49:2176

    Article  CAS  Google Scholar 

  21. Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A (2003) Carbohydr Polym 53:95

    Article  CAS  Google Scholar 

  22. van Soest JJG (1996) Starch Plastics: Structure - Property Relationships. Utrecht University, The Netherlands

    Google Scholar 

  23. Wiedmann W, Strobel E (1991) Starch 43:138

    Article  CAS  Google Scholar 

  24. Abdul Majid R, Ismail H, Mat Taib R (2010) Iran Polym J 19:501

    Google Scholar 

  25. Cheng Y, Prud homme RK, Chik J, Rau DC (2002) Macromol 35:1015

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mui Hiong Foodstuff Co., Bintulu and Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia for their cooperation and forbearance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Yiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiing, S.C., Dzulkefly, K. & Yiu, P.H. Characterization of Biodegradable Polymer Blends of Acetylated and Hydroxypropylated Sago Starch and Natural Rubber. J Polym Environ 21, 995–1001 (2013). https://doi.org/10.1007/s10924-013-0576-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0576-0

Keywords

Navigation