Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 8–15 | Cite as

Water Transport in Polylactide and Polylactide/Montmorillonite Composites

  • An Du
  • Genaro A. Gelves
  • Donghun Koo
  • Uttandaraman Sundararaj
  • Richard Cairncross
Original Paper


Polylactide–montmorillonite composites were fabricated by melt-blending followed by compression molding, and water permeability of the composites was studied by both experiments and theoretical models. The water permeation in composites decreases with increasing concentration of montmorillonite. Specifically, at a concentration of 10 wt% of montmorillonite, the water permeation is 34 % less than in the neat polymer. Transmission electron microscopy (TEM) and wide-angle X-ray scattering (WAXS) results show that most of the montmorillonite particles are well-dispersed and randomly exfoliated in the polymer matrix. A fit of theoretical models to the permeation data estimates that montmorillonite platelets are mostly exfoliated in the polymer matrix and oriented randomly, which matches with results from WAXS and TEM.


Exfoliation Montmorillonite Permeation Polylactide 



This research was supported by USDA Biomass Research and Development Initiative, funding number DE-PS36-06GO96002P. Commercial PLA samples were provided by NatureWorks, LLC and organically modified clay (montmorillonite) was provided by Southern Clay Product, Inc. Access to experimental instruments in the laboratory of Giuseppe Palmese (Chemical and Biological Eng), Christopher Li (Materials Sci. and Eng) and the Drexel Centralized Research Facility is acknowledged. Thanks to Fatima Nia Roodsari (Polymer Processing Group, University of Calgary) for mixing and compression molding experiments. Discussions with Marc Hillmyer (U. Minnesota, Chemistry Dept.), Shri Ramaswamy (U. Minnesota, Bio-based products Dept.) and Yossef Elabd (Chemical Eng.) were also helpful for this research.


  1. 1.
    Garlotta D (2001) J Polym Environ 9:63–84CrossRefGoogle Scholar
  2. 2.
    Oliveira NS, Dorgan J, Coutinho JAP, Ferreira A, Daridon JL, Marrucho IM (2007) J Polym Sci Pol Phys 45:616–625CrossRefGoogle Scholar
  3. 3.
    Oliveira NS, Goncalves CM, Coutinho JAP, Ferreira A, Dorgan J, Marrucho IM (2006) Fluid Phase Equilib 250:116–124CrossRefGoogle Scholar
  4. 4.
    Oliveira NS, Oliveira J, Gomes T, Ferreira A, Dorgan J, Marrucho IM (2004) Fluid Phase Equilib 222:317–324CrossRefGoogle Scholar
  5. 5.
    Cairncross RA, Ramaswamy S, O’Connor R (2007) Int Polym Process 22:33–37Google Scholar
  6. 6.
    Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Polym Eng Sci 48:1359–1368CrossRefGoogle Scholar
  7. 7.
    Otsuka H, Nagasaki Y, Kataoka K (2000) Biomacromolecules 1:39–48CrossRefGoogle Scholar
  8. 8.
    Tsuji H, Muramatsu H (2001) J Appl Polym Sci 81:2151–2160CrossRefGoogle Scholar
  9. 9.
    Gorrasi G, Tammaro L, Vittoria V, Paul MA, Alexandre M, Dubois P (2004) J Macromol Sci Phys B43:565–575Google Scholar
  10. 10.
    Krikorian V, Pochan DJ (2003) Chem Mater 15:4317–4324CrossRefGoogle Scholar
  11. 11.
    Koo D, Du A, Palmese GR, Cairncross RA (2012) Polym Chem UK 3:9Google Scholar
  12. 12.
    Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) J Appl Polym Sci 86:1497–1506CrossRefGoogle Scholar
  13. 13.
    Zenkiewicz M, Richert J (2008) Polym Test 27:835–840CrossRefGoogle Scholar
  14. 14.
    Bharadwaj RK (2001) Macromolecules 34:9189–9192CrossRefGoogle Scholar
  15. 15.
    Bouma RHB, Checchetti A, Chidichimo G, Drioli E (1997) J Membr Sci 128:141–149CrossRefGoogle Scholar
  16. 16.
    Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Prog Polym Sci 32:483–507CrossRefGoogle Scholar
  17. 17.
    Gonzo EE, Parentis ML, Gottifredi JC (2006) J Membr Sci 277:46–54CrossRefGoogle Scholar
  18. 18.
    Mahajan R, Koros WJ (2002) Polym Eng Sci 42:1420–1431CrossRefGoogle Scholar
  19. 19.
    Moore TT, Koros WJ (2005) J Mol Struct 739:87–98CrossRefGoogle Scholar
  20. 20.
    Moore TT, Mahajan R, Vu DQ, Koros WJ (2004) AIChE J 50:311–321CrossRefGoogle Scholar
  21. 21.
    Pal R (2008) J Colloid Interf Sci 317:191–198CrossRefGoogle Scholar
  22. 22.
    Napadensky E, Elabd YA (2004) Breathability and Selectivity of Selected Materials for Protective Clothing, ARL-TR-3235, July 2004Google Scholar
  23. 23.
    Wong W-K, Cheng S, Li CY, Ahmad I, Cairncross R, Hsuan YG (2012) Polym Degrad Stab 97:192–199CrossRefGoogle Scholar
  24. 24.
    Ray SS, Okamoto M (2003) Macromol Rapid Commun 24:815–840CrossRefGoogle Scholar
  25. 25.
    Du A, Koo D, Ziegler M, Cairncross RA (2011) J Polym Sci Part B Polym Phys 49:873–881CrossRefGoogle Scholar
  26. 26.
    Komatsuka T, Kusakabe A, Nagai K (2008) Desalination 234:212–220CrossRefGoogle Scholar
  27. 27.
    Koo D, Du A, Palmese GR, Cairncross RA (2012) Polymer 53:1115–1123CrossRefGoogle Scholar
  28. 28.
    Siparsky G, Voorhees K, Dorgan J, Schilling K (1997) J Polym Environ 5:125–136Google Scholar
  29. 29.
    Vittoria V (1995) J Mater Sci 30:3954–3958CrossRefGoogle Scholar
  30. 30.
    Auras RA, Harte B, Selke S, Hernandez R (2003) J Plast Film Sheet 19:123–135CrossRefGoogle Scholar
  31. 31.
    Drieskens M, Peeters R, Mullens J, Franco D, Lemstra PJ, Hristova-Bogaerds DG (2009) J Polym Sci Pol Phys 47:2247–2258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • An Du
    • 1
  • Genaro A. Gelves
    • 2
  • Donghun Koo
    • 1
  • Uttandaraman Sundararaj
    • 2
  • Richard Cairncross
    • 1
  1. 1.Department of Chemical and Biological EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations