Effects of Wood Fiber and Microclay on the Performance of Soy Based Polyurethane Foams

Abstract

Various polyurethane (PU) foams were prepared by in situ reaction of isocyanate and soy-based polyol. The effects of wood fiber and microclay on the foam morphologies, mechanical properties and thermal behaviors of PU foams were investigated. NCO index had fundamental impacts on the influences of wood fiber and microclay on the performance of PU foams. The reinforcement behavior of flexible foams was different to that of both semi-rigid and rigid foams. Both fiber and microclay improved the compressive strength at a high NCO index of 140–250, and contributed to relative high decomposition temperatures. Unlike the compressive strength, the tensile strength was decreased due to the amount of hard polyurea formation from secondary reactions at the highest NCO level. In addition, wood fiber had different reinforcement mechanism from microclay. Wood fiber desired to form chemical bonds during foaming while microclay had potential to form physical insertions. This difference was expressed by the change of their thermal degradation temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Anon (2010) A survey of recent chemical price trends: the potential impact of rising petrochemical prices on soy use for industrial application. Omni Tech International, Ltd

  2. 2.

    Sherman LM (2007) Polyurethanes bio-based materials capture attention. Plastics Technology. Issued on 1 December 2007

  3. 3.

    Pollack JW (2004) Soy vs. Petro Polyols, a life cycle comparison. GPEC 2004 paper #37. Omni Tech International, Ltd

  4. 4.

    Sleeckx J (2006) Foams from bio-based resources future perspectives. European conference on biorefinery research. Helsinki, Finland. 19–20 October 2006

  5. 5.

    Allen T (2009) Going green: building a greener industry with soy. Construction Executive, July 2009

  6. 6.

    Petrović ZS, Zhang W, Javni I (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6:713–719

    Article  Google Scholar 

  7. 7.

    Gu R, Konar S, Sain MM (2012) Preparation and characterization of sustainable polyurethane foams from soybean oils. J Am Oil Chem Soc. doi:10.1007/s11746-012-2109-8

  8. 8.

    Petrovic Z, Javni I, Guo A, Zhang W (2002) Method of making natural oil-based polyols and polyurethane therefrom. US Patent 6,433,121. Issued on 13 August 2002

  9. 9.

    Hou CT (1995) Microbial oxidation of unsaturated fatty acids. Adv Appl Microbiol 41:1–23

    Article  CAS  Google Scholar 

  10. 10.

    Rials TG, Wolcott MP, Nassar JM (2001) Interfacial contributions in lignocellulosic fiber-reinforced polyurethane composites. J Appl Polym Sci 80:546–555

    Article  CAS  Google Scholar 

  11. 11.

    Gu R, Sain M, Konar S (2013) A feasibility study of polyurethane composite foam with added hardwood pulp. Ind Crops Prod 42:273–279. doi:10.1016/j.indcrop.2012.06.006

    Article  CAS  Google Scholar 

  12. 12.

    Gu R, Khazabi M, Sain M (2011) Fiber reinforced soy-based polyurethane spray foam insulation. Part 2: thermal and mechanical properties. BioResources 6:3775–3790

    CAS  Google Scholar 

  13. 13.

    Khazabi M, Gu R, Sain M (2011) Fiber reinforced soy-based polyurethane spray foam insulation. Part 1: cell morphologies. BioResources 6:3757–3774

    CAS  Google Scholar 

  14. 14.

    Silva MC, Takahashi JA, Chaussy D, Belgacem MN, Silva GG (2010) Composites of rigid polyurethane foam and cellulose fiber residue. J Appl Polym Sci 117:3665–3672

    CAS  Google Scholar 

  15. 15.

    Urbanczyk L, Calberg C, Detrembleur C, Jérôme C, Alexandre M (2010) Batch foaming of SAN/clay nanocomposites with scCO2: a very tunable way of controlling the cellular morphology. Polymer 51:3520–3531

    Article  CAS  Google Scholar 

  16. 16.

    Lee YH, Wang KH, Park CB, Sain M (2006) Effects of clay dispersion on the foam morphology of LDPE/clay nanocomposites. J Appl Polym Sci 103:2129–2134

    Article  Google Scholar 

  17. 17.

    Rodrigue D, Souici S, Twite-Kabamba E (2006) Effect of wood powder on polymer foam nucleation. J Vinyl Add Tech 12:19–24

    Article  CAS  Google Scholar 

  18. 18.

    Banik I, Sain MM (2008) Role of refined paper fiber on structure of water blown soy polyol based polyurethane foams. J Reinf Plast Compos 27:1515–1524

    Article  CAS  Google Scholar 

  19. 19.

    Banik I, Sain MM (2010) Nanoclay modified water-blown polyurethane foams derived from bifunctional soybean oil-based polyol. Polym Plast Technol Eng 49:701–706

    Article  CAS  Google Scholar 

  20. 20.

    Lee CL, Homan GR (1982) Urethane modified silicone foam. J Cell Plast 18:233–239

    Article  CAS  Google Scholar 

  21. 21.

    Ellis WD, Rowell RM (1984) Reaction of isocyanates with southern pine wood to improve dimensional stability and delay resistance. Wood Fiber Sci 16:349–356

    CAS  Google Scholar 

  22. 22.

    Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A Appl Sci Manuf 38:227–233

    Article  Google Scholar 

  23. 23.

    Rowell RM, Ellis WD (1981) Chapter 19: bonding of Isocyanates to wood. Urethane chemistry and applications. Edwards KN et al (eds) ACS symposium series, vol 172. American Chemistry Society. Washington, pp 263–284

  24. 24.

    Stirna U, Sevastyanova I, Misane M, Cabulis U, Beverte I (2006) Structure and properties of polyurethane foams obtained from rapeseed oil polyols. Proc Estonian Acad Sci Chem 55:101–110

    CAS  Google Scholar 

  25. 25.

    Harikrishnan G, Patro TU, Khakhar DV (2006) Polyurethane foam–clay nanocomposites: nanoclays as cell openers. Ind Eng Chem Res 45:7126–7134

    Article  CAS  Google Scholar 

  26. 26.

    Bledzki AK, Faruk O (2006) Microcellular injection molded wood fiber–PP composites: Part II—effect of wood fiber length and content on cell morphology and physico-mechanical properties. J Cell Plast 42:77–88

    Article  CAS  Google Scholar 

  27. 27.

    Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene—clay nanocomposites. eEXPRESS Polym Lett 1:123–131

    Article  CAS  Google Scholar 

  28. 28.

    Javni I, Zhang W, Karajkov V, Petrovic ZS, Divjakovic V (2002) Effect of nano-and micro-silica fillers on polyurethane foam properties. J Cell Plast 38:229–239

    Article  CAS  Google Scholar 

  29. 29.

    Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stab 76:179–184

    Article  CAS  Google Scholar 

  30. 30.

    Wlodarczak D (1988) Studies of temperature and atmosphere composition influence on thermal degradation products of polyurethane foam. J Appl Polym Sci 36:377–386

    Article  CAS  Google Scholar 

  31. 31.

    Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25:21–69

    Article  CAS  Google Scholar 

  32. 32.

    Lee CS, Ooi TI, Chuah CH, Ahmad S (2007) Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides. J Am Oil Chem Soc 84:1161–1167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario BioCar Initiative for their financial support. The authors also thank Huntsman, Urethane Soy Systems, and Air Products for their generous donations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruijun Gu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gu, R., Sain, M.M. Effects of Wood Fiber and Microclay on the Performance of Soy Based Polyurethane Foams. J Polym Environ 21, 30–38 (2013). https://doi.org/10.1007/s10924-012-0538-y

Download citation

Keywords

  • Microclay
  • Soybean oil
  • Soy-based polyol
  • Polyurethane foam
  • Wood fiber