Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 88–94 | Cite as

Biodegradability and Mechanical Properties of Poly(vinyl alcohol)-Based Blend Plastics Prepared Through Extrusion Method

  • Martina Kopčilová
  • Jitka Hubáčková
  • Jan Růžička
  • Marie Dvořáčková
  • Markéta Julinová
  • Marek Koutný
  • Miroslava Tomalová
  • Pavol Alexy
  • Peter Bugaj
  • Jaroslav Filip
Original Paper

Abstract

Plastic blend materials consisting of poly(vinyl alcohol), glycerol and xanthan or gellan were prepared through laboratory extrusion. Their base mechanical properties were compared with the properties of poly(vinyl alcohol) foil and their biodegradability in soil, compost and both activated and anaerobic sludge were assessed. In samples with lower polysaccharide content (10–21 %w/w) the tensile strength of 15–20 MPa was found; the elongation at break of all blends was relatively close to the parameter of poly(vinyl alcohol) foil. The biodegradability levels of the blends tested corresponded to the content of natural components, and the mineralization of the samples with the highest carbohydrate proportion (42 %) reached 50–78 %, depending on the type of the environment. Complete biodegradation of all samples occurred in activated sludge.

Keywords

Poly(vinyl alcohol) Xanthan Gellan Biodegradation 

References

  1. 1.
    Gartiser S, Wallrabenstein M, Stiene G (1998) J Environ Polym Degrad 6:159CrossRefGoogle Scholar
  2. 2.
    Chiellini E, Corti A, Politi B, Solaro R (1999) Polym Degrad Stab 64:305CrossRefGoogle Scholar
  3. 3.
    Chiellini E, Corti A, Politi B, Solaro R (2000) J Polym Environ 8:67CrossRefGoogle Scholar
  4. 4.
    Ishigaki T, Kawagoshi Y, Ike M, Fujita M (1999) World J Microbiol Biotechnol 15:321CrossRefGoogle Scholar
  5. 5.
    Kenawy ER, Cinelli P, Corti A, Miertus S, Chiellini E (1999) Macromol Symp 144:351CrossRefGoogle Scholar
  6. 6.
    Park JS, Park JW, Ruckenstein E (2001) J Appl Polym Sci 80:1825CrossRefGoogle Scholar
  7. 7.
    Alexy P, Bakos D, Hanzelova S, Kukolikova L, Kupec J, Charvatova K, Chiellini E, Cinelli P (2003) Polym Test 22:801CrossRefGoogle Scholar
  8. 8.
    Dumitriu CL, Popa M, Vasiliu S, Sunel V (2004) J Macromol Sci, Pure Appl Chem 41:727CrossRefGoogle Scholar
  9. 9.
    Agnihotri SA, Aminabhavi TM (2005) Drug Dev Ind Pharm 31:491CrossRefGoogle Scholar
  10. 10.
    Kumar TMP, Umesh HM, Shivakumar HG, Ravi V, Siddaramaiah (2007) J Macromol Sci, Pure Appl Chem 44:583CrossRefGoogle Scholar
  11. 11.
    Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, Bhattacharyya UK (2010) Drug Deliv 17:508CrossRefGoogle Scholar
  12. 12.
    Sudhamani RS, Prasad MS, Udaya Sankar K (2003) Food Hydrocoll 17:245CrossRefGoogle Scholar
  13. 13.
    Hrnčiřík J, Pšeja J, Kupec J, Bernkopfová S (2010) J Polym Environ 18:98CrossRefGoogle Scholar
  14. 14.
    Slovak Standard STN ISO 527-2 (1998) Plastics: determination of tensile properties. Slovak Standards Institute, Bratislava, Slovak RepublicGoogle Scholar
  15. 15.
    ISO 11734 (1998) Water quality: evaluation of the ultimate anaerobic biodegradability of organic compounds in digested sludge. Method by measurement of the biogas production. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  16. 16.
    Czech Standard EN ISO 9439 (2001) Water quality: evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium. Carbon dioxide evolution test. Czech Institute for Standardization, Praha Czech RepublicGoogle Scholar
  17. 17.
    Czech Standard EN ISO 14855-2 (2008) Determination of the ultimate aerobic biodegradability and desintegration of plastic materials under controlled composting conditions: method by analysis of evolved carbon dioxide. Czech Institute for Standardization, Praha Czech RepublicGoogle Scholar
  18. 18.
    ISO 17556 (2003) Plastics: determination of the ultimate aerobic biodegradability in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  19. 19.
    Hoffmann J, Řezníčková I, Kozáková J, Růžička J, Alexy P, Bakoš K, Precnerová L (2003) Polym Degrad Stab 79:511CrossRefGoogle Scholar
  20. 20.
    Mansur HS, Costa ED, Mansur AAP, Barbosa-Stancioli EF (2009) Mater Sci Eng C-Mater Biol Appl 29:1574CrossRefGoogle Scholar
  21. 21.
    Hamcerencu M, Desbrieres J, Popa M, Khoukh A, Riess G (2007) Polymer 48:1921CrossRefGoogle Scholar
  22. 22.
    Noor ISM, Majid SR, Arof AK, Djurado D, Claro Neto S, Pawlicka A (2012) Solid State Ion (in press)Google Scholar
  23. 23.
    Lee MW, Chen HJ, Tsao SW (2010) Carbon Polym 82:920CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Martina Kopčilová
    • 1
  • Jitka Hubáčková
    • 1
  • Jan Růžička
    • 1
    • 2
  • Marie Dvořáčková
    • 1
  • Markéta Julinová
    • 1
    • 2
  • Marek Koutný
    • 1
    • 2
  • Miroslava Tomalová
    • 1
  • Pavol Alexy
    • 3
  • Peter Bugaj
    • 3
  • Jaroslav Filip
    • 1
  1. 1.Department of Environmental Engineering, Faculty of TechnologyTomas Bata University in ZlínZlínCzech Republic
  2. 2.Centre of Polymer SystemsZlínCzech Republic
  3. 3.Department of Plastics and Rubber, Institute of Polymer MaterialsSlovak University of TechnologyBratislava 1Slovak Republic

Personalised recommendations