Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 46–53 | Cite as

Processing and Thermal Behaviors of Poly (Butylene Succinate) Blends with Highly-Filled Starch and Glycerol

  • Wei Wang
  • Guixin Zhang
  • Weizhou Zhang
  • Weihong Guo
  • Jikui Wang
Original Paper


Fully-biodegradable and highly-filled thermoplastic starch plasticized with glycerol (GTPS)/poly (butylene succinate) (PBS) blends were prepared by Haake Mixer. Processing properties, thermal behaviors including melting and crystallization behavior, crystal structure, and compatibility of the blends were investigated using differential scanning calorimeter (DSC), wide angle X-ray diffractometer (WAXD), scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). The maximum and equilibrium torques decreased with the rising of glycerol contents and the dropping of PBS contents. GTPS30/PBS blends exhibited double melting endothermic peaks in the DSC thermograms, which related to the crystallization behavior and compatibility of the blends, but no double peaks for GTPS40/PBS. The addition of starch and glycerol could lead to higher crystallinity and lower crystallization rate of PBS, but would not change the crystal types and crystallite sizes of PBS according to DSC and WAXD analysis. SEM and DMA results gave the evidence to confirm the better compatibility of GTPS40/PBS. Besides, higher storage modulus in glassy state of GTPS/PBS blends than PBS could be seen from DMA analysis, which was the contrary in rubbery state.


Poly (butylene succinate) Starch Melting behavior Crystallization Compatibility 



The authors sincerely acknowledge the National Key Technology R & D Program of China (2012BAD32B01) and the opening fund (No. 10zxbk06) of Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, China.


  1. 1.
    Du YL, Cao Y, Lu F, Li F, Cao Y, Wang XL, Wang YZ (2008) Polym Test 27:924–930CrossRefGoogle Scholar
  2. 2.
    Liu HS, Xie FW, Yu L, Chen L, Li L (2009) Prog Polym Sci 34:1348–1368CrossRefGoogle Scholar
  3. 3.
    Randzio SL, Flis-Kabulska I, Grolier JPE (2002) Macromolecules 35:8852–8859CrossRefGoogle Scholar
  4. 4.
    Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273–1335CrossRefGoogle Scholar
  5. 5.
    Zeng JB, Jiao L, Li YD, Srinivasan M, Li T, Wang YZ (2011) Carbohyd Polym 83:762–768CrossRefGoogle Scholar
  6. 6.
    Fujimaki T (1998) Polym Degrad Stab 59:209–214CrossRefGoogle Scholar
  7. 7.
    Ray SS, Okamoto K, Okamoto M (2003) Macromolecules 36:2355–2367CrossRefGoogle Scholar
  8. 8.
    Li YD, Zeng JB, Wang XL (2008) Biomacromolecule 9(11):3157–3164CrossRefGoogle Scholar
  9. 9.
    Qiu ZB, Komura M, Ikehara T, Nishi T (2003) Polymer 44:7781–7785CrossRefGoogle Scholar
  10. 10.
    Ohkita T, Lee SH (2005) J Appl Polym Sci 97(3):1107–1114CrossRefGoogle Scholar
  11. 11.
    Myllarinen P, Partanen R, Seppala J, Forssell P (2002) Carbohyd Polym 50(4):355–361CrossRefGoogle Scholar
  12. 12.
    Qiao XY, Tang ZZ, Sun K (2011) Carbohyd Polym 83:659–664CrossRefGoogle Scholar
  13. 13.
    Liu T, Petermann J (2001) Polymer 42:6453–6461CrossRefGoogle Scholar
  14. 14.
    Yasuniwa M, Satou T (2002) J Polym Sci Pol Phys 40:2411–2420CrossRefGoogle Scholar
  15. 15.
    Kalambur S, Rizvi SSH (2005) J Appl Polym Sci 96:1072–1082CrossRefGoogle Scholar
  16. 16.
    Ohkita T, Lee SH (2005) J Appl Polym Sci 97:1107–1114CrossRefGoogle Scholar
  17. 17.
    Yoon KH, Lee HW, Park OO (1998) J Appl Polym Sci 70:389CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Zhang HS, Yu YB, Guo WH, Wu CF (2009) J Appl Polym Sci 114:1187–1194CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Zhang HS, Ni LP (2010) J Polym Environ 18:647–653CrossRefGoogle Scholar
  20. 20.
    Dai HG, Chang PR, Yu JG, Geng FY, Ma XF (2010) Starch-Starke 62:86–89CrossRefGoogle Scholar
  21. 21.
    Alexander LE (1969) X-Ray diffraction methods in polymer science. Wiley, New YorkGoogle Scholar
  22. 22.
    Shi QF, Chen C, Gao L, Jiao L, Xu HY, Guo WH (2010) Polym Degrad Stab 96(1):175–182Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wei Wang
    • 1
  • Guixin Zhang
    • 1
  • Weizhou Zhang
    • 1
  • Weihong Guo
    • 1
  • Jikui Wang
    • 1
  1. 1.Polymer Alloy Lab, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations