Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 151–159 | Cite as

Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends

  • Márcia Maria Favaro Ferrarezi
  • Márcia de Oliveira Taipina
  • Laura Caetano Escobar da Silva
  • Maria do Carmo Gonçalves
Original Paper


A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.


Poly(lactic acid) Thermoplastic starch Poly(ethylene glycol) Blend Morphology 



This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Brazil) through Inomat, National Institute (INCT) for Complex Functional Materials. The authors would also like to thank Cargill Dow and Copagra for material donation.


  1. 1.
    Yu L, Dean K, Li L (2006) Prog Polym Sci 31:576CrossRefGoogle Scholar
  2. 2.
    Williams CK, Hillmyer MA (2008) Polym Rev 48:1CrossRefGoogle Scholar
  3. 3.
    Gupta AP, Kumar V (2007) Eur Polym J 43:4053CrossRefGoogle Scholar
  4. 4.
    Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841CrossRefGoogle Scholar
  5. 5.
    Li HB, Huneault MA (2007) Polymer 48:6855CrossRefGoogle Scholar
  6. 6.
    Wang N, Zhang XX, Han N, Fang J, Thermopl J (2010) Comp Mat 23:19Google Scholar
  7. 7.
    Wang N, Yu J, Chang PR, Ma X (2008) Carbohydr Polym 71:109CrossRefGoogle Scholar
  8. 8.
    Cai Q, Yang J, Bei J, Wang S (2002) Biomater 23:4483CrossRefGoogle Scholar
  9. 9.
    Huneault MA, Li H (2007) Polymer 48:270CrossRefGoogle Scholar
  10. 10.
    Park JW, Im SS (2000) Polym Eng Sci 40:2539CrossRefGoogle Scholar
  11. 11.
    Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumita M (2007) Polym Degrad Stab 92:1626CrossRefGoogle Scholar
  12. 12.
    Ren J, Fu H, Ren T, Yuan W (2009) Carbohydr Polym 77:576CrossRefGoogle Scholar
  13. 13.
    Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromol 3:1179CrossRefGoogle Scholar
  14. 14.
    Liao H-T, Wu C-H (2009) Mat Sci Eng A 515:207CrossRefGoogle Scholar
  15. 15.
    Petersson L, Oksman K (2006) Comp Sci Technol 66:2187CrossRefGoogle Scholar
  16. 16.
    Jacobsen S, Fritz HG (1996) Polym Eng Sci 36:2799CrossRefGoogle Scholar
  17. 17.
    Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Polym Compos 31:114Google Scholar
  18. 18.
    DeLeo C, Pinotti CA, Gonçalves MC, Velankar S (2011) J Polym Environ 19:689CrossRefGoogle Scholar
  19. 19.
    Averous L, Halley PJ (2009) Biofpr 3:329Google Scholar
  20. 20.
    Smits ALM, Kruiskamp PH, Van Soest JJG, Vliegenthart JFG (2003) Carbohydr Polym 53:409CrossRefGoogle Scholar
  21. 21.
    Hulleman SHD, Janssen FHP, Feil H (1998) Polymer 39:2043CrossRefGoogle Scholar
  22. 22.
    Martin O, Averous L (2001) Polymer 42:6209CrossRefGoogle Scholar
  23. 23.
    Carvalho AJF, Curvelo AAS, Gandini A (2005) Ind Crops Prod 21:331CrossRefGoogle Scholar
  24. 24.
    Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1495CrossRefGoogle Scholar
  25. 25.
    Nature Works LLC Reports (2011) Accessed 5 January 2011
  26. 26.
    Luo WJ, Li SM, Bei JZ, Wang SG (2002) J Appl Polym Sci 84:1729CrossRefGoogle Scholar
  27. 27.
    Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) Polymer 37:5849CrossRefGoogle Scholar
  28. 28.
    Pillin I, Montrelay N, Grohens Y (2006) Polymer 47:4676CrossRefGoogle Scholar
  29. 29.
    Pereira AGB, Gollveia RF, de Carvalho GM, Rubira AF, Muniz EC (2009) Mater Sci Eng, C 29:499CrossRefGoogle Scholar
  30. 30.
    Kim C-H, Kim D-W, Cho KY (2009) Polym Bull 63:91CrossRefGoogle Scholar
  31. 31.
    Lourdin D, Bizot H, Colonna P (1997) J Appl Polym Sci 63:1047CrossRefGoogle Scholar
  32. 32.
    Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49:599CrossRefGoogle Scholar
  33. 33.
    Craig DQM (1995) Themochim Acta 248:189CrossRefGoogle Scholar
  34. 34.
    Bogdanov B, Vidts A, Bulcke VD, Verbeeck R, Schacht E (1998) Polymer 39:1631CrossRefGoogle Scholar
  35. 35.
    Read BE (1962) Polymer 3:529CrossRefGoogle Scholar
  36. 36.
    Cassu SN, Felisberti MI (1997) Polymer 38:3907CrossRefGoogle Scholar
  37. 37.
    Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Polymer 41:8909CrossRefGoogle Scholar
  38. 38.
    Fischer EW, Sterzel HJ, Wegner G, Kolloid ZZ (1973) Polymer 25:980Google Scholar
  39. 39.
    Beaumont RH, Clegg B, Gee G, Herbert JBM, Marks DJ, Roberts RC, Sims D (1966) Polymer 7:401CrossRefGoogle Scholar
  40. 40.
    Schlemmer D, de Oliveira ER, Sales MJA, Thermal J (2007) Anal Calorim 87:635CrossRefGoogle Scholar
  41. 41.
    Yokesahachart C, Yoksan R (2011) Carbohydr Polym 83:22CrossRefGoogle Scholar
  42. 42.
    Shi QF, Chen C, Gao L, Jiao L, Xu H, Guo W (2011) Polym Degrad Stab 96:175CrossRefGoogle Scholar
  43. 43.
    McNeill IC, Leiper HA (1985) Polym Degrad Stab 11:309CrossRefGoogle Scholar
  44. 44.
    Zeng QH, Yu AB, Lu GQ, Paul DR (2005) J Nanosci Nanotechnol 5:1574CrossRefGoogle Scholar
  45. 45.
    Aggarwal P, Dollimore D, Heon K (1997) J Thermal Anal 50:7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Márcia Maria Favaro Ferrarezi
    • 1
  • Márcia de Oliveira Taipina
    • 1
  • Laura Caetano Escobar da Silva
    • 1
  • Maria do Carmo Gonçalves
    • 1
  1. 1.Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations