Skip to main content

Advertisement

Log in

The Potential of Chicken Eggshell Waste as a Bio-filler Filled Epoxidized Natural Rubber (ENR) Composite and its Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Eggshell calcium carbonate (ECC) and eggshell calcium carbonate treated with high temperature (ECC-600) were prepared from chicken eggshell waste. ECC was obtained by crushing eggshell waste, eliminating membranes and followed by sieving. In the case of ECC-600, ECC powder was additionally heated at 600 °C for 2 h. Both were used to promote as fillers compared to that of commercial light-precipitated calcium carbonate (commercial CaCO3) with various loading levels (i.e., 0, 25, 50 and 75 phr) in epoxidized natural rubber containing 25 mol% of epoxide group (ENR-25). Among the three types of fillers (i.e., ECC, ECC-600 and commercial CaCO3), ECC filled materials showed superior vulcanization characteristics by the increasing of maximum torque (MH) and cure rate index (CRI) with the reducing of cure time (tc90) and scorch time (ts2). The highest tensile properties as well as the lowest tension set value were also observed. Morphological property revealed that ECC was greater interfacial adhesion than those of others. In addition, dynamic mechanical properties of vulcanizates containing ECC, storage modulus (E′) was the highest and glass transition temperature (T g ) shifted toward high temperature. Increasing of loading levels of any fillers affected the increase of MH and CRI with reducing of tc90 and ts2. However, tensile properties decreased with increasing filler content but it did not affect T g shifting except for a series of vulcanizates containing ECC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sonnier R, Leroy E, Clerc L, Bergeret A, Lopez-cuesta JM, Bretelle AS, Ienny P (2008) Polym Test 27:901–907

    Article  CAS  Google Scholar 

  2. Sonnier R, Leroy E, Clerc L, Bergere A, Lopez-Cuesta JM (2007) Polym Test 26:274–281

    Article  CAS  Google Scholar 

  3. Qin J, Ding H, Wang X, Xie M, Yu Z (2008) Polym Test 27:321–329

    Article  Google Scholar 

  4. Ismail H, Awang M, Hazizan MA (2006) Polym Plast Technol Eng 45:463–468

    Article  CAS  Google Scholar 

  5. Awang M, Ismail H (2008) Polymer Test 27:321–329

    Article  CAS  Google Scholar 

  6. Ishak ZAM, Bakar AA (1995) Eur Polym J 31:259–269

    Article  CAS  Google Scholar 

  7. Ishak ZAM, Abu Bakar A, Ishiaku US, Hashim AS, Azahari B (1997) Eur Polym J 33:73–79

    Article  CAS  Google Scholar 

  8. Sombatsompop N, Thongsang S, Markpin T, Wimolmala E (2004) J Appl Polym Sci 93:2119–2130

    Article  CAS  Google Scholar 

  9. Thongsang S, Sombatsompop N (2007) J Sci Technol 14:77–89

    Google Scholar 

  10. Xu Y, Wu Q, Lei Y, Fei Y (2010) Biores Technol 101:3280–3286

    Article  CAS  Google Scholar 

  11. Stael GC, Tavares MIB, D’Almeida JRM (2001) Polym Test 20:869–872

    Article  CAS  Google Scholar 

  12. Ismail H, Rusli A, Rashid AA (2005) Polym Test 24:856–862

    Article  CAS  Google Scholar 

  13. Stadelman WJ (2000) Eggs and egg products. In: Francis FJ (ed) Encyclopedia of food science and technology. Wiley, New York, pp 593–599

    Google Scholar 

  14. Ruangsittichai J, Viyanant V, Vichasri-Grams S, Sobhon P, Tesana S, Upatham ES, Hofmann A, Korge G, Grams R (2006) Int J Parasitol 36:1329–1339

    Article  CAS  Google Scholar 

  15. Dupoirieux L, Pourquier D, Souyris F (1995) J Cranio-maxillofac Surg 23:187–194

    Article  CAS  Google Scholar 

  16. Ishizuka Y, Kawamoto Y, Imai H (1992) Nippon Kagaku Kaishi 5:477–483

    Article  Google Scholar 

  17. Balázsi C, Wéber F, Kövér Z, Horváth E, Németh C (2007) J Eur Ceram Soc 27:1601–1606

    Article  Google Scholar 

  18. Yoo S, Hsieh SJ, Zou P, Kokoszka J (2009) Bioresour Technol 100:6416–6421

    Article  CAS  Google Scholar 

  19. Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Mater Lett 61:4347–4350

    Article  CAS  Google Scholar 

  20. Supri AG, Ismail H, Shuhadah S (2010) Polym Plast Technol Eng 49:347–353

    Article  CAS  Google Scholar 

  21. Nys Y, Hincke MT, Arias JL, Garcia-Ruiz JM, Solomon SE (1999) Poult Avian Biol Rev 10:143–166

    Google Scholar 

  22. Arias JL, Fink DJ, Xiao S, Heuer AH, Caplan AI (1993) Int Rev Cytol 145:217–250

    Article  CAS  Google Scholar 

  23. Lohakul A, Kaesaman A, Rungvichaniwat A, Nakason C (2007) e Polymers 8:1–11

    Google Scholar 

  24. Rothon R (2003) In: Rothon R (ed) Particulate-filled polymer composites. Rapra Technology Limited, Shrewsbury, pp 399–401

    Google Scholar 

  25. Wypych G (1999) In: Wypych G (ed) Handbook of fillers. Chem Tec Publishing, Toronto, pp 48–57

    Google Scholar 

  26. Dakhel HR (2008) e Polymers 140:1–9

    Google Scholar 

  27. Saeb MR, Dakhel HR, Ghaffari A (2008) AIP Conf Proc 1042:312–314

    Article  CAS  Google Scholar 

  28. Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US (2004) Eur Polym J 40:2513–2521

    Article  CAS  Google Scholar 

  29. Arroyo M, López-Manchado MA, Valentίn JL, Carretero J (2007) Compos Sci Technol 67:1330–1339

    Article  CAS  Google Scholar 

  30. Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Mater Des 30:3839–3845

    Article  CAS  Google Scholar 

  31. Freire MN, Holanda JNF (2006) Cerâmica 52:240–244

    Article  CAS  Google Scholar 

  32. Fraser AC, Cusak M (2002) Am Microsc Anal 53:23–24

    Google Scholar 

  33. Sae-oui P, Rakdee C, Thanmathorn P (2002) J Appl Polym Sci 83:2485–2493

    Article  CAS  Google Scholar 

  34. Moore DM, Reynolds RC (1989) X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, NewYork, pp 234–235

    Google Scholar 

  35. Naemchanthara K (2008) Temperature effect on chicken eggshells as investigated by XRD, TGA, FT-IR and ESR techniques. Ph.D. Dissertation, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

  36. Tsai WT, Yang JM, Hsu HC, Lin CM, Lin KY, Chiu CH (2008) Microp Mesop Mater 111:379–386

    Article  CAS  Google Scholar 

  37. Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW (2006) Biores Tech 97:488–493

    Article  CAS  Google Scholar 

  38. Mann K, Siedler F (1999) Biochem Mol Biol Int 47:997–1007

    CAS  Google Scholar 

  39. Rivera EM, Ariza M, Brostow W, Castano VM, Diaz-Estrada JR, Hernandez R, Rodriguez JR (1999) Mater Lett 41:128–134

    Article  CAS  Google Scholar 

  40. Wang PY, Chen Y, Qian HL (2007) J Appl Polym Sci 105:3255–3259

    Article  CAS  Google Scholar 

  41. Tajima Y (1991) Process for acceleratively vulcanizing rubbers with protein serum. US Patent 4,987,196, 22 Jan 1991

  42. Wei W, Gu H (2009) Mater Design 30:2741–2744

    Article  Google Scholar 

  43. Schloman WW Jr, Teetor VH, Ray DT (2006) Rubb Chem Tech 79:631–640

    Article  CAS  Google Scholar 

  44. Boonstra BB (1971) In: Blow CM (ed) Rubber technology and manufacture. Butterworth Scientific, London, pp 250–300

    Google Scholar 

  45. Poompradub S, Ikeda Y, Kokubo Y, Shiono T (2008) Eur Polym J 44:4157–4164

    Article  CAS  Google Scholar 

  46. Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Compos Part A 36:1499–1506

    Article  Google Scholar 

  47. Ibarra L, Chamorro C (1991) J Appl Polym Sci 83:1805–1819

    Article  Google Scholar 

  48. Dong S, Gauvin R (1993) Polym Compos 14:414–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Dr. Daniel Derouet for valuable suggestions given. We are also thankful to the faculty of Science, Ubonrachathani University for access to facilities throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punyanich Intharapat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Intharapat, P., Kongnoo, A. & Kateungngan, K. The Potential of Chicken Eggshell Waste as a Bio-filler Filled Epoxidized Natural Rubber (ENR) Composite and its Properties. J Polym Environ 21, 245–258 (2013). https://doi.org/10.1007/s10924-012-0475-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0475-9

Keywords

Navigation