Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 54–70 | Cite as

Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres

  • Cameron Way
  • Dong Yang Wu
  • Darren Cram
  • Katherine Dean
  • Enzo Palombo
Original Paper

Abstract

Polylactic acid (PLA) composites comprising up to 25 wt% cotton linter (CL) or up to 50 % maple wood fibre (WF) were prepared by compounding and injection moulding. A reduction of crystallinity in the PLA matrix was observed as a result of the thermal processing method. These PLACL and PLAWF composites provided excellent improvements in both stiffness (with increases in tensile and flexural modulus) and toughness (increases in notched impact strength) properties over the neat PLA resin, while the tensile and flexural strengths of the composites were generally unchanged, while the strain at break values were reduced in comparison to the neat PLA. DMA results indicated incorporating these fibres caused the mechanical loss factor (tan δ) to decrease, suggesting better damping capabilities were achieved with the composites. SEM analysis of the impact fractured surfaces of the PLACL composites showed debonding-cavitation at the matrix-fibre interface while the PLAWF composites showed good wetting along its matrix-fibre interface. The composting of these composites up to 90 days showed that the degradation onset time was increased when increasing the fibre loadings, but the maximum degree of degradation and the maximum daily rates of degradation were decreased compared to neat PLA. On a weight basis of fibre loading, the PLACL composites had a quicker onset of biodegradation, a higher maximum daily rate of biodegradation and, overall, a higher degree of biodegradation at 90 days than the PLAWF composites, possibly due to the quicker thermal hydrolysis observed in the PLA matrix of the PLACL composites during processing and composting.

Keywords

Cotton linters Maple fibres Polylactic acid (PLA) Thermomechanical properties Scanning electron microscopy Biodegradation Composting 

References

  1. 1.
    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107–2131CrossRefGoogle Scholar
  2. 2.
    AWF (2011) American Wood Fibers website. Maryland, USA. www.awf.com. Accessed 22 March 2012
  3. 3.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  4. 4.
    Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) J Mater Sci 40:4221–4229CrossRefGoogle Scholar
  5. 5.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2007) Compos B 38:367–379CrossRefGoogle Scholar
  6. 6.
    Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 63:1317–1324CrossRefGoogle Scholar
  7. 7.
    Braun B, Dorgan JR, Knauss DM (2006) J Polym Environ 14:49–58CrossRefGoogle Scholar
  8. 8.
    Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Macromol Mater Eng 288:35–43CrossRefGoogle Scholar
  9. 9.
    Lee SH, Wang S (2006) Compos A 37:80–91CrossRefGoogle Scholar
  10. 10.
    Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L (2003) Compos Sci Technol 63:1287–1296CrossRefGoogle Scholar
  11. 11.
    Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Compos Sci Technol 63:1281–1286CrossRefGoogle Scholar
  12. 12.
    Chow P, Nakayama FS, Blahnik B, Youngquist JA, Coffelt TA (2008) Ind Crops Prod 28:303–308CrossRefGoogle Scholar
  13. 13.
    Raya SS, Yamada K, Okamoto M, Ueda K (2003) Polymer 44:857–866CrossRefGoogle Scholar
  14. 14.
    Garlotta D (2001) J Polym Environ 9:63–84CrossRefGoogle Scholar
  15. 15.
    Van de Velde K, Kiekens P (2002) Polym Test 21:433–442CrossRefGoogle Scholar
  16. 16.
    Perego G, Cella GD, Bastioli C (1996) J Appl Polym Sci 59:37–43CrossRefGoogle Scholar
  17. 17.
    Liu X, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Thermochim Acta 509:147–151CrossRefGoogle Scholar
  18. 18.
    Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Polym Degrad Stab 95:1704–1707CrossRefGoogle Scholar
  19. 19.
    Manikandan Nair KC, Thomas S, Groeninckx G (2001) Compos Sci Technol 61:2519–2529CrossRefGoogle Scholar
  20. 20.
    Pluta M (2004) Polymer 45:8239–8251CrossRefGoogle Scholar
  21. 21.
    Martin O, Averous L (2001) Polymer 42:6209–6219CrossRefGoogle Scholar
  22. 22.
    Kulinski Z, Piorkowska E (2005) Polymer 46:10290–10300CrossRefGoogle Scholar
  23. 23.
    Hiljanen-Vainio M, Heino M, Seppala JV (1998) Polymer 39:865–872CrossRefGoogle Scholar
  24. 24.
    Osswald TA (May 26–27, 1999) In: Proceedings of the 5th international conference of wood fiber–plastic composites Madison, WisconsinGoogle Scholar
  25. 25.
    Ljungberg N, Cavaillé JY, Heux L (2006) Polymer 47:6285–6292CrossRefGoogle Scholar
  26. 26.
    Folkes MJ (1985) In: Bevis MJ (ed) Short fibre reinforced thermoplastics. Research Studies Press, Chichester, p 151Google Scholar
  27. 27.
    Devi LU, Bhagawan SS, Thomas S (1997) J Appl Polym Sci 64:1739–1748CrossRefGoogle Scholar
  28. 28.
    Wells JK, Beaumont PWR (1985) J Mater Sci 20:1275–1284CrossRefGoogle Scholar
  29. 29.
    Pavithran C, Mukherjee PS, Brahmakumar M (1991) J Reinf Plast Comp 10:91–101CrossRefGoogle Scholar
  30. 30.
    Park SD, Todo M, Arakawa K, Koganemaru M (2006) Polymer 47:1357–1363CrossRefGoogle Scholar
  31. 31.
    Mascia L (1974) In: The role of additives in plastics, chap 3. Edward Arnold, London UKGoogle Scholar
  32. 32.
    Zhang F, Endo T, Qiu W, Yang L, Hirotsu T (2002) J Appl Polym Sci 84:1971–1980CrossRefGoogle Scholar
  33. 33.
    Pearson RA, Yee AF (1989) J Mater Sci 24:2571–2580CrossRefGoogle Scholar
  34. 34.
    Rong MZ, Zheng MQ, Zheng YX, Zeng HM, Friedrich K (2001) Polymer 42:3301–3304CrossRefGoogle Scholar
  35. 35.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  36. 36.
    Rana AK, Mitra BC, Banerjee AN (1999) J Appl Polym Sci 71:531–539CrossRefGoogle Scholar
  37. 37.
    Petersen K, Nielsen PV, Olsen MB (2001) Starch–Stärke 53:356–361CrossRefGoogle Scholar
  38. 38.
    George J, Thomas S, Bhagawan SS (1999) J Thermoplast Compos Mater 12:443–464Google Scholar
  39. 39.
    Simonsen J, Jacobsen R, Rowell R (1998) J Appl Polym Sci 68:1567–1573CrossRefGoogle Scholar
  40. 40.
    Liu X, Dever M, Fair N, Benson RS (1997) J Polym Environ 5:225–235Google Scholar
  41. 41.
    Thomson JL (1990) Polym Compos 11:105–113CrossRefGoogle Scholar
  42. 42.
    Fay JJ, Murphy CJ, Thomas DA, Sperling LH (1991) Polym Eng Sci 31:1731–1741CrossRefGoogle Scholar
  43. 43.
    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24CrossRefGoogle Scholar
  44. 44.
    MatWeb (2012) Material Property Data. Online Database. Maple wood properties—various species. www.matweb.com. Accessed 22 March 2012
  45. 45.
    Bergman R, Cai Z, Carll CG, Clausen CA, Dietenberger MA, Falk RH, Frihart CR, Glass SV, Hunt CG, Ibach RE, Kretschmann DE, Rammer DR, Ross RJ (2010) Wood Handbook, Wood as an Engineering Material. General Technical Report FPL-GTR-190. Forest Products Laboratory, Madison, Wisconsin USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Cameron Way
    • 1
    • 2
  • Dong Yang Wu
    • 3
  • Darren Cram
    • 1
  • Katherine Dean
    • 1
  • Enzo Palombo
    • 2
  1. 1.Division of Materials Science and EngineeringCSIROClayton SouthAustralia
  2. 2.Faculty of Life and Social Sciences, Environment and Biotechnology CentreSwinburne University of TechnologyHawthornAustralia
  3. 3.The Boeing CompanyPort MelbourneAustralia

Personalised recommendations