Skip to main content
Log in

Preparation and Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend with Epoxy-Functional Styrene Acrylic Copolymer as Reactive Agent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang NW, Wang QF, Ren J et al (2007) China Plast Indus 35:62

    Google Scholar 

  2. Van de Velde K, Kiekens P (2002) Polym Testing 21:433

    Article  Google Scholar 

  3. Lunt J (1998) Polym Degrad Stab 59:145

    Article  CAS  Google Scholar 

  4. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841

    Article  CAS  Google Scholar 

  5. Ren J, Zhang NW (2004) Mater Rev 18:61

    Google Scholar 

  6. Siracusa V, Rocculi P, Romani S et al (2008) Food Sci Technol 19:634

    Article  CAS  Google Scholar 

  7. Sedlarik V, Saha N, Sedlarikova J et al (2008) Macromol Symp 272:100

    Article  CAS  Google Scholar 

  8. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  9. Witt U, Einig T, Yamamoto M et al (2001) Chemosphere 44:289

    Article  CAS  Google Scholar 

  10. Gan ZH, Kuwabara K, Yamamoto M et al (2006) J Polym Sci, Part B: Polym Phys 44:3006

    Article  Google Scholar 

  11. Jun CL (2000) J Polym Environ 8:33

    Article  Google Scholar 

  12. Guan J, Fang Q, Hanna MA (2004) J Polym Environ 12:57

    Article  CAS  Google Scholar 

  13. Zhang JW, Jiang L, Zhu LY (2006) Biomacromolecules 7:1551

    Article  CAS  Google Scholar 

  14. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199

    Article  Google Scholar 

  15. Jiang L, Liu B, Zhang JW (2009) Ind Eng Chem Res 48:7594

    Article  CAS  Google Scholar 

  16. Teamsinsungvon A, Ruksakulpiwat Y, Jarukumjorn K (2010) Adv Mater Res 123–125:193

    Article  Google Scholar 

  17. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Kor Aust Rheol J 19:125

    Google Scholar 

  18. Ma XF, Yu JG, Wang N (2006) J Polym Sci, Part B: Polym Phys 44:94

    Article  CAS  Google Scholar 

  19. Harada M, Ohya T, Iida K (2007) J Appl Polym Sci 106:1813

    Article  CAS  Google Scholar 

  20. John J, Bhattacharya M (2000) Polym Int 49:860

    Article  CAS  Google Scholar 

  21. Wang L, Ma W, Gross RA, McCarthy SP (1998) Polym Degrad Stab 59:161

    Article  CAS  Google Scholar 

  22. John J, Bhattacharya M (2000) Polym Int 49:860

    Article  CAS  Google Scholar 

  23. Signori F, Coltelli MB, Bronco S (2009) Polym Degrad Stab 94:74

    Article  CAS  Google Scholar 

  24. Babanalbandi A, Hill DJT, Hunter DS, Kettle L (1999) Polym Int 48:980

    Article  CAS  Google Scholar 

  25. Zhang NW, Wang QF, Ren J et al (2009) J Mater Sci 44:250

    Article  CAS  Google Scholar 

  26. Semba T, Kitagawa K, Ishiaku US et al (2006) J Appl Polym Sci 101:1816

    Article  CAS  Google Scholar 

  27. Ho K, Kale L, Montgomery S (2002) J Appl Polym Sci 85:1408

    Article  CAS  Google Scholar 

  28. Ahmed J, Zhang JX, Song Z, Varshney SK (2009) J Therm Anal Calorim 95:957

    Article  CAS  Google Scholar 

  29. Gu SY, Zhang K, Ren J et al (2008) Carbohydr Polym 74:79

    Article  CAS  Google Scholar 

  30. Sinha Ray S, Okamoto M (2003) Macromol Mater Eng 288:936

    Article  Google Scholar 

  31. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003) Polymer 44:857

    Article  CAS  Google Scholar 

  32. Hyun YH, Lim ST, Choi HJ et al (2001) Macromolecules 34:8084

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Zeng, C., Wang, L. et al. Preparation and Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend with Epoxy-Functional Styrene Acrylic Copolymer as Reactive Agent. J Polym Environ 21, 286–292 (2013). https://doi.org/10.1007/s10924-012-0448-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0448-z

Keywords

Navigation