Skip to main content
Log in

Potential Use of Recycled PET in Comparison with Liquid Crystalline Polyester as a Dual Functional Additive for Enhancing Heat Stability and Reinforcement for High Density Polyethylene Composite Fibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The recycle poly(ethylene terephthalate) (rPET) used as an alternative reinforcing material for in situ microfibrillar-reinforced composite, compared with liquid crystalline polymer (LCP), was investigated. The PE-LCP and PE-rPET composites were prepared as fiber using hot drawing process. The effects of draw ratios and compatibilizer (styrene-ethylene butylene-styrene-grafted maleic anhydride, SEBS-g-MA) loading on morphology, tensile properties, thermal stability and dynamic mechanical characteristics of the LCP- and rPET-composite systems were studied. In as-spun samples containing compatibilizer, the fibrillation of LCP domains was observed whereas rPET domains appeared as droplets. After drawing, good fibrillation of LCP and rPET domains is remarkably observed especially in the composite fibers with compatibilizer loading. The mechanical properties of the composite fibers were strongly depended on the fibrillation of the dispersed phases which directly related the levels of draw ratio and compatibilizer loading. The mechanical properties enhanced by SEBS-g-MA were more pronounced in the rPET than LCP systems. The presence of rPET in the composite fibers alone or with the compatibilizer clearly improved the thermal resistance of PE whereas no significant change in thermal stability for the LCP-containing composite fibers with and without compatibilizer loading. The results from dynamic mechanical analysis revealed that an improvement in dynamic mechanical properties of the composite fibers could be achieved by drawing with optimum draw ratio together with optimum compatibilizer dosage. All obtained results suggested the high potential of rPET minor blend-component as a good reinforcing and thermal resistant materials for the thermoplastic composite fiber, in replacing the more expensive LCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kiss G (1987) Polym Eng Sci 27:410

    Article  CAS  Google Scholar 

  2. Acierno D, Collyer AA (1996) Rheology and processing of liquid crystal polymers. 1st ed. Polymer liquid crystal series, vol 2. Chapman & Hall, London

  3. Isayev AI, Modic M (1987) Polym Compos 8(3):158

    Article  CAS  Google Scholar 

  4. Mehta A, Isayev AI (1991) Polym Eng Sci 31(13):963

    Article  CAS  Google Scholar 

  5. Tjong S (2003) Mater Sci Eng R41:1

    CAS  Google Scholar 

  6. Saikrasun S, Limpisawasdi P, Amornsakchai T (2009) J Polym Res 16:443

    Article  CAS  Google Scholar 

  7. Saikrasun S, Limpisawasdi P, Amornsakchai T (2009) J Appl Polym Sci 112:1897

    Article  CAS  Google Scholar 

  8. Kalfoglou NK, Skafidas DS, Sotiropoulou DD (1994) Polymer 35:3624

    Article  CAS  Google Scholar 

  9. Aglietto M, Coltelli MB, Savi S, Lochiatto F, Ciardelli F, Giani M (2004) J Mater Cycles Waste Manag 6:13

    Article  CAS  Google Scholar 

  10. Yi X, Xu L, Wang YL, Zhong GJ, Ji X, Li ZM (2010) Eur Polym J 46:719

    Article  CAS  Google Scholar 

  11. Friedrich K, Evstatiev M, Farikov S, Evstatiev O, Ishii M, Harrass M (2005) Compos Sci Technol 65:107

    Article  CAS  Google Scholar 

  12. Taepaiboon P, Junkasem J, Dungtungee R, Amornsakchai T, Supaphol P (2006) J Appl Polym Sci 102:1173

    Article  CAS  Google Scholar 

  13. Fuchs C, Bhattacharyya D, Fakirov S (2006) Compos Sci Technol 66:3161

    Article  CAS  Google Scholar 

  14. Santos P, Pezzin SH (2003) J Mater Process Technol 143–144:517

    Article  Google Scholar 

  15. Evstatiev M, Fakirov S, Krasteva B, Friedrich K, Covas JA, Cunha AM (2002) Polym Eng Sci 42:826

    Article  CAS  Google Scholar 

  16. Pawlak A, Morawiec J, Pazzagli F, Pracella M, Galeski A (2002) J Appl Polym Sci 86:1473

    Article  CAS  Google Scholar 

  17. Avila AF, Duarte MV (2003) Polym Degrad Stab 80:373

    Article  CAS  Google Scholar 

  18. Zhang H, Guo W, Yu Y, Li B, Wu C (2007) Euro Polym J 43:3662

    Article  CAS  Google Scholar 

  19. Evstatiev M, Fakirov S (1992) Polymer 33:877

    Article  CAS  Google Scholar 

  20. Bataille P, Boisse S, Schreiber HP (1987) Polym Eng Sci 27(9):622

    Article  CAS  Google Scholar 

  21. Xanthos M, Young MW, Biesenberger JA (1990) Polym Eng Sci 30(6):355

    Article  CAS  Google Scholar 

  22. Heino M, Kirijava J, Heitoaja P, Seppala J (1997) J Appl Polym Sci 65:241

    Article  CAS  Google Scholar 

  23. Kayaisang S, Amornsakchai T, Saikrasun S (2009) Polym Adv Technol 20:1136

    Article  CAS  Google Scholar 

  24. Lei Y, Wu Q, Zhang Q (2009) Composites A 40:904

    Article  Google Scholar 

  25. Incarnato L, Scarfato P, Maio LD, Acierno D (2004) Polymer 41:6825

    Article  Google Scholar 

  26. Li ZM, Yang MB, Xie BH, Feng JM, Huang R (2003) Polym Eng Sci 43:615

    Article  CAS  Google Scholar 

  27. Lin QH, Jho J, Yee AF (1993) Polym Eng Sci 33:789

    Article  CAS  Google Scholar 

  28. Itoyama K (1988) J Polym Sci, Part B: Polym Phys 26:1845

    Article  CAS  Google Scholar 

  29. Peterson JD, Vyazovkin S, Wight CA (2001) Macromol Chem Phys 202:775

    Article  CAS  Google Scholar 

  30. Saikrasun S, Wongkalasin O (2005) Polym Degrad Stab 88:300

    Article  CAS  Google Scholar 

  31. Sato H, Kikuchi T, Koide N, Furuya K (1996) J Appl Pyrolysis 37:173

    Article  Google Scholar 

  32. Girija BG, Sailaja RRN, Madras G (2005) Polym Degrad Stab 90:147

    Article  CAS  Google Scholar 

  33. Villain P, Coudane J, Vert M (1995) Polym Degrad Stab 49:393

    Article  CAS  Google Scholar 

  34. Paik P, Kar KK (2008) Polym Degrad Stab 93:24

    Article  CAS  Google Scholar 

  35. Huang Y, Jiang S, Wu L, Hua Y (2004) Polym Test 23:9

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission (OHEC), Ministry of Education, is gratefully acknowledged. We also would like to acknowledge Faculty of Science, Mahasarakham University and Higher Education Research Promotion and National Research Universities Development for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunan Saikrasun or Taweechai Amornsakchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayaisang, S., Saikrasun, S. & Amornsakchai, T. Potential Use of Recycled PET in Comparison with Liquid Crystalline Polyester as a Dual Functional Additive for Enhancing Heat Stability and Reinforcement for High Density Polyethylene Composite Fibers. J Polym Environ 21, 191–206 (2013). https://doi.org/10.1007/s10924-012-0446-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0446-1

Keywords

Navigation