Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 132–140 | Cite as

Synthesis and Characterization of Novel Heat Stable and Processable Optically Active Poly(Amide–Imide) Nanostructures Bearing Hydroxyl Pendant Group in an Ionic Green Medium

Original Paper

Abstract

Ionic liquids (IL)s have been recognized as ‘green’ alternatives to the organic solvents in a range of synthesis, catalysis and electrochemistry due to their unique chemical and physical properties. In this investigation, a series of organosoluble, thermally stable and optically active hydroxyl-containing poly(amide–imide)s (PAI)s were prepared via polycondensation reaction of an aromatic diamine, 3,5-diamino-N-(4-hydroxyphenyl)benzamide (4), and different chiral amino acid-based diacids (3a–3e) in the presence of molten tetrabutylammonium bromide as a molten IL and triphenyl phosphite under classical heating method. This process is safe and green since toxic and volatile organic solvents such as N-methylpyrrolidone (NMP) and N,N′-dimethylacetamide (DMAc) were eliminated. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.23 and 0.54 dL g−1 and were characterized by Fourier transform infrared spectroscopy, specific rotation, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis, elemental analysis, and in some cases by 1H-NMR techniques. The FE-SEM micrographs and XRD showed that the synthesized PAIs were nanostructured and amorphous polymers. The effect of ultrasonic irradiation on the size of polymer particles was also investigated and the results showed that the size of polymer nanoparticles after ultrasonication became smaller than the size of them, before ultrasonic radiation. All of the polymers were readily soluble in many organic solvents such as N,N′-dimethyl sulfoxide, DMAc and NMP.

Keywords

Green chemistry Amino acid Optically active polymer Nanostructured polymer 

References

  1. 1.
    Hamciuc E, Hamciuc C, Airinei A, Bruma M (1997) Angew Makromol Chem 245:105–112CrossRefGoogle Scholar
  2. 2.
    Hsiao SH, Yang CP, Chen CW, Liou GS (2005) J Polym Res 38:627–634Google Scholar
  3. 3.
    Yang CP, Su YY (2005) Macromol Chem Phys 206:1947–1958CrossRefGoogle Scholar
  4. 4.
    Behniafar H, Mohammadparast-delshaad S (2012) Polym Degrad Stabil 97:228–233CrossRefGoogle Scholar
  5. 5.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefGoogle Scholar
  6. 6.
    Illescas J, Ramirez-Fuentes YS, Rivera E, Morales-Saavedra OG, Rodriguez-Rosales AA, Alzari V, Nuvoli D, Marian A (2012) J Polym Sci, Part A: Polym Chem 50:821–830CrossRefGoogle Scholar
  7. 7.
    Zhang S, Feret A, Lefebvre H, Tessier M, Fradet A (2011) Chem Commun 47:11092–11094CrossRefGoogle Scholar
  8. 8.
    Matsumoto K, Endo T (2011) J Polym Sci, Part A: Polym Chem 49:3582–3587CrossRefGoogle Scholar
  9. 9.
    Kaneko Y, Kyutoku T, Shimomura N, Kadokawa JI (2011) Chem Lett 40:31–33CrossRefGoogle Scholar
  10. 10.
    Mallakpour S, Rafiee Z (2011) Prog Polym Sci 36:1754–1765CrossRefGoogle Scholar
  11. 11.
    Ye L, Ju L, Wu C, Feng T, Mo W, Wu F, Bai Y, Feng ZG (2009) J Appl Polym Sci 114:1086–1093CrossRefGoogle Scholar
  12. 12.
    Bai H, Wu X, Shi G (2006) Polymer 47:1533–1537CrossRefGoogle Scholar
  13. 13.
    Tsubata A, Uchiyama T, Kameyama A, Nishikubo T (1997) Macromolecules 30:5649–5654CrossRefGoogle Scholar
  14. 14.
    Domanska U, Marciniak A, Krolikowski M (2008) J Phys Chem B 112:1218–1225CrossRefGoogle Scholar
  15. 15.
    Mallakpour S, Taghavi M (2008) Polymer 49:3239–3249CrossRefGoogle Scholar
  16. 16.
    Mallakpour S, Dinari M (2010) J Polym Environ 18:705–713CrossRefGoogle Scholar
  17. 17.
    Mallakpour S, Zadehnazari A (2009) J Macromol Sci, Pure Appl Chem 46:783–789CrossRefGoogle Scholar
  18. 18.
    Wulff G (2007) Angew Chem Int Ed 28:21–37Google Scholar
  19. 19.
    Song C, Li L, Wang F, Deng J, Yang W (2011) Polym Chem 2:2825–2829CrossRefGoogle Scholar
  20. 20.
    Sogava H, Shiotsuki M, Matsuoka H, Sanda F (2011) Macromolecules 44:3338–3345CrossRefGoogle Scholar
  21. 21.
    Sanda F, Yukawa Y, Masuda T (2004) Polymer 45:849–854CrossRefGoogle Scholar
  22. 22.
    Mallakpour S, Zadehnazari A (2011) Exp Polym Lett 5:142–181CrossRefGoogle Scholar
  23. 23.
    Maeda K, Kuroyanagi K, Sakurai SI, Yamanaka T, Yashima E (2011) Macromolecules 44:2457–2464CrossRefGoogle Scholar
  24. 24.
    Liu R, Sogawa H, Shiotsuki M, Masuda T, Sanda F (2010) Polymer 51:2255–2263CrossRefGoogle Scholar
  25. 25.
    In I, Kim SY (2005) Macromol Rapid Commun 206:1862–1869CrossRefGoogle Scholar
  26. 26.
    Mallakpour S, Hajipour AR, Habibi S (2002) J Appl Polym Sci 86:2211–2216CrossRefGoogle Scholar
  27. 27.
    Mallakpour S, Hajipour AR, Habibi S (2001) Eur Polym J 37:2435–2442CrossRefGoogle Scholar
  28. 28.
    Mallakpour S, Shahmohammadi MH (2004) J Appl Polym Sci 92:951–959CrossRefGoogle Scholar
  29. 29.
    Mallakpour S, Shahmohammadi MH (2005) Iran Polym J 14:473–483Google Scholar
  30. 30.
    Faghihi K, Foroughifar N, Mallakpour S (2004) Iran Polym J 13:93–99Google Scholar
  31. 31.
    Van Krevelen DW (1975) Polymer 16:615–620CrossRefGoogle Scholar
  32. 32.
    Van Eldik R, Hubbard CD (1996) Chemistry under extreme or non classical conditions. Wiley, New YorkGoogle Scholar
  33. 33.
    Flosdorf EW, Chambers LA (1933) J Am Chem Soc 55:3051–3052CrossRefGoogle Scholar
  34. 34.
    Melville HW, Murray AJR (1950) Trans Faraday Soc 46:996–1009CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations