Skip to main content
Log in

Lignin Functionalized by Thermally Curable Propargyl Groups as Heat-Resistant Polymeric Material

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lignin was chemically functionalized via Williamson etherification reaction with propargyl bromide to prepare a thermosetting bio-resin, propargyllignin. The optimum reaction conditions were found at 70 °C for 4 h under the catalysis of sodium hydroxide in the ethanol solution. The propargllignin resin had highly improved processing capability, evidenced by good solubility, low melting point (<100 °C) and thermal curability. Upon heating, propargyllignin resin solidified with an exotherm around 180–280 °C peaking at 240 °C, implying its thermal cure reaction via ethynyl polymerization. Compared with lignin feedstock, the propargyllignin resin showed much higher thermal properties: an onset decomposition temperature of 410 °C and a residue yield of 58 % at 800 °C (for lignin, onset decomposition temperature of 250 °C and residue yield of 34 %). Different from the lignin feedstock, propargyllignin was readily applied as curable thermosetting resin for composite matrix, and exhibited high mechanical and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perlack RD, Wright LL, Turhollow A, Graham RL, Stokes B, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, Report No. DOE/GO-102995-2135

  2. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  3. Wang M, Xu C, Leitch M (2009) Bioresour Technol 100:2305–2307

    Article  CAS  Google Scholar 

  4. Effendi A, Gerhauser H, Bridgwater AV (2008) Renew Sustain Energy Rev 12:2092–2116

    Article  CAS  Google Scholar 

  5. Lora JH, Glasser WG (2002) J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  6. Thielemans W, Can E, Morye SS, Wool RP (2002) J Appl Polym Sci 83:323–331

    Article  CAS  Google Scholar 

  7. Wool RP, Sun XS (2005) Bio-based polymers and composites. Elsevier, Burlington

    Google Scholar 

  8. Steward D (2008) Ind Crops Prod 27:202–207

    Article  Google Scholar 

  9. Reghunadhan Nair CP (2004) Prog Polym Sci 29:401–498

    Article  Google Scholar 

  10. Inbasekaran MN, Dirlikov SK (1989) US Patent 4,885,403

  11. Wang M, Wei L, Zhao T (2005) Eur Polym J 41:903–912

    Article  CAS  Google Scholar 

  12. Fernandez-Bolanos J, Felizon B, Heredia A, Guillen R, Jimenez A (1999) Bioresour Technol 68:121–132

    Article  CAS  Google Scholar 

  13. Wang M, Wei L, Zhao T (2006) Polymer 46:9202–9210

    Article  Google Scholar 

  14. Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P (2000) J Anal Appl Pyrol 54:153–192

    Article  CAS  Google Scholar 

  15. Zhou C, Gu A, Liang G, Ji L, Yuan L (2010) J Polym Res 18:139–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingcun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Yang, L. Lignin Functionalized by Thermally Curable Propargyl Groups as Heat-Resistant Polymeric Material. J Polym Environ 20, 783–787 (2012). https://doi.org/10.1007/s10924-012-0430-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0430-9

Keywords

Navigation