Skip to main content
Log in

Formulation and Characterization of Sodium Alginate g-Hydroxy Ethylacrylate Bio-Degradable Polymeric Beads: In Vitro Release Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Novel type of highly swollen beads were prepared by grafting 2-hydroxyethylacrylate onto biodegradable Sodium alginate (SA) via free-radical polymerization using potassium persulphate as an initiator and Triprolidine hydrochloride as a model drug. Evidence of grafting was obtained by fourier transform infrared spectroscopic technique. Morphological properties of the beads were studied by SEM analysis. Thermal properties and crystallinity of the beads were characterized using differential scanning calorimetry and thermogravimetric analysis and X-ray diffraction techniques, respectively. Dissolution experiments were performed to study the release profiles at 37 °C in phosphate buffer solution (pH-7.4). Effect of monomer content, crosslinking agent and drug/polymer ratio on swelling properties and release profiles were also comparatively studied. A dissolution result concludes that drug release decreases with increasing crosslinker content. The highest release (96%) was obtained for the beads prepared with 0.5 mL crosslinking agent. Equilibrium swelling degree also supports the drug release profiles confirming SA-g-HEA beads showed better release profiles compare to plain SA beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tonnesen HH, Karlsen J (2002) Drug Dev Ind Pharm 28:621–630

    Article  CAS  Google Scholar 

  2. Rubio MR, Ghaly ES (1994) Drug Dev Ind Pharm 20:1239–1251

    Article  CAS  Google Scholar 

  3. Musa SA, Fara DA, Badwan AA (1999) J Control Release 57:223–232

    Article  Google Scholar 

  4. Yotsuyanagi T, Yoshioka I, Segi N, Ikeda K (1991) Chem Pharm Bull 39:1072–1074

    Article  CAS  Google Scholar 

  5. Giunchedi P, Gavini E, Moretti MDL, Gerolamo P (2000) AAPS PharmSciTech 1(3):31

    Article  Google Scholar 

  6. Ramesh Babu V, Sairam M, Hosamani KM, Aminabhavi TM (2007) Carbohyd Polym 69:241–250

    Article  CAS  Google Scholar 

  7. Philipp B, Bock W, Schierbaum F (1979) J Polym Sci Polym Symp 66:83–100

    Article  CAS  Google Scholar 

  8. Shah SB, Patel CP, Trivedi HC (1994) Angew Makro Mol Chem 214:75–89

    Article  CAS  Google Scholar 

  9. Shah SB, Patel CP, Trivedi HC (1995) Carbohydr Polym 26:61–67

    Article  CAS  Google Scholar 

  10. Shah SB, Patel CP, Trivedi HC (1992) High Perform Polym 4:151–159

    Article  CAS  Google Scholar 

  11. Vijayakumar MT, Reddy CR, Joseph KT (1985) Eur Polym J 21:415–419

    Article  CAS  Google Scholar 

  12. Shah SB, Patel CP, Trivedi HC (1994) High Perform Polym 6:193–200

    Article  CAS  Google Scholar 

  13. Venkata Prasad C, Madhu Sudhana Rao K, Mallikarjuna B, Subha MCS, Chowdoji Rao K (2010) Adv Mater Res 123–125:387–390

    Article  Google Scholar 

  14. Wu GS, Hou SZ, Chen YQ (1993) Yingyong Huaxue 10:51–53

    CAS  Google Scholar 

  15. Wu GS, Li SZ, Wu ZP (1995) Shiyou Huagong 24:793–798

    Google Scholar 

  16. Blair HS, Lai KM (1982) Polymer 23:1838–1841

    Article  CAS  Google Scholar 

  17. Shah SB, Patel CP, Trivedi HC (1994) J Appl Polym Sci 51:1421–1426

    Article  CAS  Google Scholar 

  18. Wang SX, Sun HW, Liu YH, Xuebao HebeiDaxue (1996) Ziran Kexueban 16:24–29

    CAS  Google Scholar 

  19. Hench LL (1998) Bio-materials 19:1419–1423

    CAS  Google Scholar 

  20. Ravi Kumar MNV (2000) Recat Funct Polym 46:1–27

    Article  Google Scholar 

  21. Yoshioka T, Hirnao R, Shioya T, Kako M (1990) Biotechnol Bio-Eng 35:66–72

    Article  CAS  Google Scholar 

  22. Varma AJ, Deshpande SV, Kennedy JF (2004) Carbohydr Polym Sci 55:77–93

    Article  CAS  Google Scholar 

  23. Blair HS, Guthrie J, Law T, Turkington T (1987) J Appl Polym Sci 33:641–656

    Article  CAS  Google Scholar 

  24. Mun GA, Nurkeeva ZS, Dergunov SA, Nam IK, Maimakov TP, Shaikhutdinov EM, Lee SC, Park K (2008) React Funct Polym 68:389

    Article  CAS  Google Scholar 

  25. Venkata Prasad C, Yerri Swamy B, Mallikarjuna B, Subha MCS, Chowdoji Rao K, Yu JS Adv Polym Techn (In press)

  26. Yazadani-Pedram M (1997) J Appl Polym Sci 63:1321–1326

    Article  Google Scholar 

  27. Singh DK, Ray AR (1999) J Membr Sci 155:107–112

    Article  CAS  Google Scholar 

  28. Najjar AMK, Yunus WMDZ, Ahamad MB (2000) J Appl Polym Sci 77:2314–2318

    Article  CAS  Google Scholar 

  29. Yazadani-Pedram M, Retuert J, Quilada R (2000) Macromol Chem Phys 201:923–930

    Article  Google Scholar 

  30. Johnsen K, Kirkhorn S, Olafsen K, Redford K, Storl A (1996) J Appl Polym Sci 59:1651–1657

    Article  CAS  Google Scholar 

  31. Monleón Pradas M, Gómez Ribelles JL, Serrano Aroca A, Gallego Ferrer G, Suay Antón J, Pissis P (2001) Polymer 42:4667–4674

    Article  Google Scholar 

  32. Pourjavadi Ali (2008) Starch-Stärke 60:79–86

    Article  CAS  Google Scholar 

  33. Nicholson AN (1979) J Clin Pharmacol 8:321–324

    CAS  Google Scholar 

  34. Simons FER (2004) New Eng J. Med 351:2203–2217

    CAS  Google Scholar 

  35. Ravindra S, Varaprasad K, Narayana Reddy N, Vimala K, Mohana Raju K (2011) J Polym Environ 19:413–418

    Article  CAS  Google Scholar 

  36. Liu Y, Li Y, Yang L, Liu Y, Bai L (2005) Iran Polym J 14:457–463

    Google Scholar 

  37. Liu Y, Cui Y, Yin G, Ma H (2009) Iran Polym J 18(4):339–348

    Google Scholar 

  38. Kulkarni AR, Sopimath KS, Aminabhavi TM, Rudzinski Walter E (2001) Eur J Pharma Bio-Pharma 51:127–133

    Article  CAS  Google Scholar 

  39. Korsmeyer RC, Peppas NA (1981) J Memb Sci 9:211–227

    Article  CAS  Google Scholar 

  40. Ritger PL, Peppas NA (1987) J Control Release 5:23–36

    Article  CAS  Google Scholar 

  41. Aminabhavi TM, Naik HG (1998) J Hazard Mater 60:175–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We immensely thank the UGC, New Delhi, India (UGC-RFSMS scheme), National Research foundation of Korea (NRF) grant funded by the Korea Government (MEST) (No:2011-0030804) and Brain Korea (BK21) Projects Corps of the second phase, Changwon National University, South Korea for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Jung Il or Kashay Chowdoji Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkata Prasad, C., Yerri Swamy, B., Lakshmi Narayana Reddy, C. et al. Formulation and Characterization of Sodium Alginate g-Hydroxy Ethylacrylate Bio-Degradable Polymeric Beads: In Vitro Release Studies. J Polym Environ 20, 344–352 (2012). https://doi.org/10.1007/s10924-011-0401-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0401-6

Keywords

Navigation