Skip to main content

Advertisement

Log in

Antimicrobial Activity of the Chitosan Extracted from Metapenaeus stebbingi Shell Wastes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the study, chitosan chemically extracted from Metapenaeus stebbingi shells obtained from shrimp processing factories and commercial chitosan were used as antimicrobial materials. Antimicrobial activities of the chitosans dissolved in acetic, lactic, formic and hydrochloric acid at different concentrations (1.00, 0.50, 0.25, 0.10 and 0.05%) were tested in vitro by using the disk diffusion method with standard microorganisms (Pseudomonas putida, Pseudomonas fluorescens, Vibrio parahaemolyticus, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli 1, Escherichia coli 2, Listeria monocytogenes, Enterecoccus faecalis, Aeromonas caviae). On the other hand, gentamicin was used as positive control. Antimicrobial test results indicated that chitosan demonstrated different effects depending on the chitosan concentration, solvent material and bacteria type. In the present study, both the extracted and commercial chitosans were observed to have antimicrobial effects on nearly all types of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeuniaux C, Vossfoucart MF (1991) Biochem Syst Ecol 19:347

    Article  CAS  Google Scholar 

  2. Ruiz-Herrera J (1978) The distribution and quantitative importance of chitin in fungi. In: Muzzarelli RAA, Pariser ER (eds.) Proceedings of the first international conference on chitin/chitosan. MIT Sea Grant Report MITSG78-7, Index No. 78-307-Dmb. Massachusetts Institute of Technology, Cambridge, pp. 11–21

  3. Sandford PA (2003) Commercial sources of chitin and chitosan and their utilization, In Vårum KM, Domard A, Smidsrød O (eds.) Advances in chitin sciences, vol 6. NTNU Trondheim, Trondheim, p 35

  4. Yen MT, Yang JH, Mau JL (2009) Carbohydr Polym 75:15

    Article  CAS  Google Scholar 

  5. Hongpattarakere T, Riyaphan O (2008) Songklanakarin J Sci Technol 30:1

    Google Scholar 

  6. Jeon YJ, Kamil JYVA, Shahidi F (2002) J Agric Food Chem 50:5167

    Article  CAS  Google Scholar 

  7. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Biomacromolecules 4:1457

    Article  CAS  Google Scholar 

  8. Tsai GJ, Zhang SL, Shieh PL (2004) J Food Protect 67:396

    CAS  Google Scholar 

  9. Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Jansson HB, Lopez-Llorca LV, Salinas J, Gerasimenko DV, Avdienko ID, Varlamov VP (2006) Carbohydr Polym 64:66

    Article  CAS  Google Scholar 

  10. Zheng LY, Zhu JF (2003) Carbohydr Polym 54:527

    Article  CAS  Google Scholar 

  11. Fouad DRG (2008) Chitosan as an antimicrobial compound: modes of action and resistance mechanisms. Mathematisch-Naturwissenschaftliche Fakultät, Universität Bonn

    Google Scholar 

  12. Chang KLB, Tsai G, Lee J, Fu WR (1997) Carbohydr Res 303:327

    Article  CAS  Google Scholar 

  13. Tolaimate A, Desbrières J, Rhazi M, Alagui A, Vincendon M, Vottero P (2000) Polymer 41:2463

    Article  CAS  Google Scholar 

  14. Wang QZ, Chen XG, Liu N, Wang SX, Liu CS, Meng XH, Liu CG (2006) Carbohydr Polym 65:194

    Article  CAS  Google Scholar 

  15. Wang JC, Kinsella JE (1976) J Food Sci 41:286

    Article  CAS  Google Scholar 

  16. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Am J Clin Pathol 45:493

    CAS  Google Scholar 

  17. Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1992) J Bioactive Comp Polym 7:370

    Article  CAS  Google Scholar 

  18. Nemtsev SV, Gamzazade AI, Rogozhin SV, Bykova VM, Bykov VP (2002) Appl Biochem Microbiol 38:521

    Article  CAS  Google Scholar 

  19. No HK, Meyers SP (1997) Preparation of chitin and chitosan. In: Muzzarelli RAA, Peter MG (eds). Chitin handbook. European Chitin Society, pp 475–489

  20. Jeon YJ, Park PJ, Kim SK (2001) Carbohydr Polym 44(11):71

    Article  CAS  Google Scholar 

  21. No HK, Kim SH, Lee SH, Park NY, Lee SH, Prinyawiwatku W (2006) Carbohydr Polym 65:174

    Article  CAS  Google Scholar 

  22. Yang TC, Chou CC, Li CF (2005) Int J Food Microbiol 97:237

    Article  CAS  Google Scholar 

  23. Darmadji P, Izumimoto M (1994) Meat Sci 38:243

    Article  CAS  Google Scholar 

  24. Jia ZS, Shen DF, Xu WL (2001) Carbohydr Res 333:1

    Article  CAS  Google Scholar 

  25. Jumaa M, Furkert FH, Muller BW (2002) Eur J Pharm Biopharm 53:115

    Article  CAS  Google Scholar 

  26. Shigemasa Y, Minami S (1995) Biotechnol Genet Eng Rev 13:383

    Google Scholar 

  27. Liu WG, De Yao K (2002) J Control Release 83:1

    Article  Google Scholar 

  28. Xia WS, Wu YN (1996) J Wuxi Univ Light Ind 15:297

    CAS  Google Scholar 

  29. Seo S, King JM, Prinyawiwatkul W, Janes M (2008) J Food Sci 73(8):400

    Article  Google Scholar 

  30. Tajik H, Moradi M, Rohani SMR, Efrani AM, Jalali FSS (2008) Molecules 13:1263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aygül Küçükgülmez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küçükgülmez, A., Gülnaz, O., Celik, M. et al. Antimicrobial Activity of the Chitosan Extracted from Metapenaeus stebbingi Shell Wastes. J Polym Environ 20, 431–437 (2012). https://doi.org/10.1007/s10924-011-0395-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0395-0

Keywords

Navigation