Skip to main content
Log in

The Effect of Polymeric Chain Extenders on Physical Properties of Thermoplastic Starch and Polylactic Acid Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The effects of a polymeric chain extender on the properties of bioplastic film made from blends of plasticized polylactic acid (p-PLA) and thermoplastic starch (TPS) were studied. Joncryl ADR 4370S, a polymeric chain extender, was blended with TPS and p-PLA at a level of 1% (w/w). A co-rotating twin-screw extrusion process was used to prepare films with various ratios of TPS and p-PLA. Mechanical and physical properties of films, including film tensile properties, surface energy, moisture content, hydrophilicity, moisture sorption behaviour and thermal mechanical properties were determined. During extrusion, films enhanced by 1% Joncryl addition demonstrated more desirable and consistent qualities, such as smoother film edge and surface. Addition of Joncryl significantly improved film tensile strength, 0.2% offset yield strength, and elongation, especially evident with the 250% elongation of 70/30 (TPS/p-PLA) film. Total surface energy of films was not significantly influenced by addition of Joncryl. However, the polar contribution to the total surface energy of 70/30 (TPS/p-PLA) film increased after the addition of Joncryl. The study showed that blending TPS with p-PLA transformed TPS film from being highly hydrophilic to highly hydrophobic. On the other hand, addition of Joncryl had limited effects on moisture content, water solubility, glass transition temperature and moisture sorption behaviour of TPS/p-PLA blend films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ke T, Sun X (2000) Cereal Chem 77:761

    Article  CAS  Google Scholar 

  2. Godbole S, Gote S, Latkar M, Chakrabarti T (2003) Bioresour Technol 86:33

    Article  CAS  Google Scholar 

  3. Preechawong D, Peesan M, Supaphol P, Rujiravanit R (2005) Carbohydr Polym 59:329

    Article  CAS  Google Scholar 

  4. Wang N, Yu J, Chang PR, Ma X (2007) Starch 59:409

    Article  CAS  Google Scholar 

  5. Wang N, Yu J, Chang PR, Ma X (2008) Carbohydr Polym 71:109

    Article  CAS  Google Scholar 

  6. Ren J, Fu H, Ren T, Yuan W (2009) Carbohydr Polym 77:576

    Article  CAS  Google Scholar 

  7. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Compos Sci Technol 69:1293

    Article  CAS  Google Scholar 

  8. Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637

    Article  CAS  Google Scholar 

  9. Jin T, Zhang H (2008) J Food Sci 73:M127

    Article  CAS  Google Scholar 

  10. Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227

    Article  CAS  Google Scholar 

  11. Huneault MA, Li H (2007) Polymer 48:270

    Article  CAS  Google Scholar 

  12. Liu Q (2002) J Food Sci 67:2113

    Article  CAS  Google Scholar 

  13. Donner EA, Liu Q, Arsenault WJ, Ivany JA, Wood PJ (2009) Food 3(Special Issue 1):31–38

    Google Scholar 

  14. ASTM (1996) Standard test method for tensile properties of thin plastic sheeting, D882-91. In: Annual book of ASTM. American Society for Testing and Materials, Philadelphia

  15. Zhang Y, Han JH (2006) J Food Sci 71:E109

    Article  Google Scholar 

  16. Zhang Y, Han JH (2006) J Food Sci 71:E253

    Article  CAS  Google Scholar 

  17. Han JH, Zhang Y, Buffo R (2005) Surface chemistry of food, packaging and biopolymer materials. In: Han JH (ed) Innovations in food packaging. Elsevier Academic Press, New York, pp 45–59

    Chapter  Google Scholar 

  18. Cyras VP, Manfredi LB, Ton-That MT, Vazquez A (2008) Carbohydr Polym 73:55

    Article  CAS  Google Scholar 

  19. Lee LH (1996) Langmuir 12:1681

    Article  CAS  Google Scholar 

  20. Zhang Y, Han JH (2008) J Food Sci 73:E313

    Article  CAS  Google Scholar 

  21. Rosa GS, Moraes MA, Pinto LAA (2010) LWT Food Sci Technol 43:415

    Article  CAS  Google Scholar 

  22. Roy S, Gennadios S, Weller CL, Testin RF (2000) Ind Crops Prod 211:43

    Article  Google Scholar 

  23. Wang Y, Padua GW (2004) J Agri Food Chem 52:3100

    Article  CAS  Google Scholar 

  24. Cassini AS, Marczak LDF, Norena CPZ (2006) J Food Eng 77:194

    Article  CAS  Google Scholar 

  25. De Moura MR, Avena-Bustillos RJ, Mchugh TH, Krochta JM, Mattoso LHC (2008) J Food Sci 73:N31

    Article  Google Scholar 

  26. Brunauer S, Deming LS, Deming WE, Troller E (1940) J Am Chem Soc 62:1723

    Article  CAS  Google Scholar 

  27. Diab T, Biladeris CG, Gerasopoulos D, Sfakiotakis E (2001) J Sci Food Agric 81:988

    Article  CAS  Google Scholar 

  28. Zimeri JE, Kokini JL (2002) Carbohydr Polym 48:299

    Article  CAS  Google Scholar 

  29. Biliaderis CG, Lazaridou A, Arvanitoyannis I (1999) Carbohydr Polym 40:29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the BioPotato network (co-leaders: Drs. Helen Tai and Yvan Pelletier) under the Agricultural Bioproducts Innovation Program (ABIP) of Agriculture & Agri-Food Canada. The authors thank Mrs. Elizabeth Donner for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yuan, X., Liu, Q. et al. The Effect of Polymeric Chain Extenders on Physical Properties of Thermoplastic Starch and Polylactic Acid Blends. J Polym Environ 20, 315–325 (2012). https://doi.org/10.1007/s10924-011-0368-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0368-3

Keywords

Navigation